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Preface

Life sciences, ranging from medicine, biology and genetics to biochemistry and
pharmacology have developed rapidly in previous years. Computerization of
those domains allowed to gather and store enormous collections of data. Anal-
ysis of such vast amounts of information without any support is impossible for
human being. Therefore recently machine learning and pattern recognition meth-
ods have attracted the attention of broad spectrum of experts from life sciences
domain.

The aim of this Workshop is to stress the importance of interdisciplinary col-
laboration between life and computer sciences and to provide an international
forum for both practitioners seeking new cutting-edge tools for solving their do-
main problems and theoreticians seeking interesting and real-life applications for
their novel algorithms. We are interested in novel machine learning technologies,
designed to tackle complex medical, biological, chemical or environmental data
that take into consideration the specific background knowledge and interactions
between the considered problems. We look for novel applications of machine
learning and pattern recognition tools to contemporary life sciences problems,
that will shed light on their strengths and weaknesses. We are interested in new
methods for data visualization and methods for accessible presentation of re-
sults of machine learning analysis to life scientists. We welcome new findings
in the intelligent processing of non-stationary medical, biological and chemical
data and in proposals for efficient fusion of information coming from multiple
sources. Papers on efficient analysis and classification of bid data (understood
as both massive volumes and high-dimensionality problems) will be of special
interest to this Workshop.

September 2016 Michal Wozniak
Bartosz Krawczyk

Workshop Chair
MLLS 2016
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Abstract. Survival analysis is a fundamental tool in medical research
to identify predictors of adverse events and develop systems for clinical
decision support. In order to leverage large amounts of patient data, e�-
cient optimisation routines are paramount. We propose an e�cient train-
ing algorithm for the kernel survival support vector machine (SSVM).
We directly optimise the primal objective functionand employ truncated
Newton optimisation and order statistic trees to significantly lower com-
putational costs compared to previous training algorithms, which require
O(n4) space and O(pn6) time for datasets with n samples and p features.
Our results demonstrate that our proposed optimisation scheme allows
analysing data of a much larger scale with no loss in prediction perfor-
mance. Experiments on synthetic and 5 real-world datasets show that our
technique outperforms existing kernel SSVM formulations if the amount
of right censoring is high (� 85%), and performs comparably otherwise.

Keywords: survival analysis · support vector machine · optimisation ·
kernel-based learning

1 Introduction

In clinical research, the primary interest is often the time until occurrence of an
adverse event, such as death or reaching a specific state of disease progression.
In survival analysis, the objective is to establish a connection between a set of
features and the time until an event of interest. It di↵ers from traditional machine
learning, because parts of the training data can only be partially observed. In
a clinical study, patients are often monitored for a particular time period, and
events occurring in this particular period are recorded. If a patient experiences
an event, the exact time of the event can be recorded – the time of the event is
uncensored. In contrast, if a patient remained event-free during the study period,
it is unknown whether an event has or has not occurred after the study ended –
the time of an event is right censored at the end of the study.

Cox’s proportional hazards model (CoxPH) is the standard for analysing
time-to-event data. However, its decision function is linear in the covariates,



2 Pölsterl, Navab, and Katouzian

which can lead to poor predictive performance if non-linearities and interactions
are not modelled explicitly. Depending on the level of complexity, researchers
might be forced to try many di↵erent model formulations, which is cumbersome.
The success of kernel methods in machine learning has motivated researchers
to propose kernel-based survival models, which ease analysis in the presence of
non-linearities, and allow analysing complex data in the form of graphs or strings
by means of appropriate kernel functions (e.g. [23, 35]). Thus, instead of merely
describing patients by feature vectors, structured and more expressive forms of
representation can be employed, such as gene co-expression networks [36].

A kernel-based CoxPH model was proposed in [24, 2]. Authors in [19, 28] cast
survival analysis as a regression problem and adapted support vector regression,
whereas authors in [11, 31] cast it as a learning-to-rank problem by adapting
the rank support vector machine (Rank SVM). Eleuteri et al. [10] formulated
a model based on quantile regression. A transformation model with minimal
Lipschitz smoothness for survival analysis was proposed in [33]. Finally, Van
Belle et al. [34] proposed a hybrid ranking-regression model.

In this paper, we focus on improving the optimisation scheme of the non-
linear ranking-based survival support vector machine (SSVM). Existing training
algorithms [11, 31] perform optimisation in the dual and require O(pn6) time –
excluding evaluations of the kernel function – and O(n4) space, where p and n
are the number of features and samples. Recently, an e�cient training algorithm
for linear SSVM with much lower time complexity and linear space complex-
ity has been proposed [26]. We extend this optimisation scheme to the non-
linear case and demonstrate its superiority on synthetic and real-world datasets.
Our implementation of the proposed training algorithm is available online at
https://github.com/tum-camp/survival-support-vector-machine.

2 Methods

Given a dataset D of n samples, let xi denote a p-dimensional feature vector,
ti > 0 the time of an event, and ci > 0 the time of censoring of the i-th sample.
Due to right censoring, it is only possible to observe yi = min(ti, ci) and �i =
I(ti  ci) for every sample, with I(·) being the indicator function and ci = 1
for uncensored records. Hence, training a survival model is based on a set of
triplets: D = {(xi, yi, �i)}n

i=1. After training, a survival model ought to predict
a risk score of experiencing an event based on a set of given features.

2.1 The Survival Support Vector Machine

The SSVM is an extension of the Rank SVM [13] to right censored survival data
[31, 11]. Consequently, survival analysis is cast as a learning-to-rank problem:
patients with a lower survival time should be ranked before patients with longer
survival time. In the absence of censoring – as it is the case for traditional Rank
SVM – all pairwise comparisons of samples are used during training. However,
if samples are right censored, some pairwise relationships are invalid. When
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comparing two censored samples i and j (�i = �j = 0), it is unknown whether
the i-th sample should be ranked before the j-th sample or vice versa, because
the exact time of an event is unknown for both samples. The same applies if
comparing an uncensored sample i with a censored sample j (�i = 1 and �j = 0)
if yi < yj . Therefore, a pairwise comparison (i, j) is only valid if the sample with
the lower observed time is uncensored. Formally, the set of valid comparable
pairs P is given by

P = {(i, j) | yi > yj ^ �j = 1}n
i,j=1,

where it is assumed that all observed time points are unique [31, 11]. Training a
linear SSVM (based on the hinge loss) requires solving the following optimisation
problem:

min
w

1

2
kwk2

2 + �
X

(i,j)2P
max(0, 1 � w>(xi � xj)), (1)

where w 2 IRp are the model’s coe�cients and � > 0 controls the degree of
regularisation.

Without censoring, all possible pairs of samples have to be considered during
training, hence |P| = n(n � 1)/2 and the sum in (1) consists of a quadratic
number of addends with respect to the number of training samples. If part of the
survival times are censored, the size of P depends on the amount of uncensored
records and the order of observed time points – censored and uncensored. Let qe

denote the percentage of uncensored time points, then |P| is at least qen(qen �
1)/2. This situation arises if all censored subjects drop out before the first event
was observed, hence, all uncensored records are incomparable to all censored
records. If the situation is reversed and the first censored time point occurs after
the last time point of an observed event, all uncensored records can be compared
to all censored records, which means |P| = qen

2 � qen(qen+1)/2. In both cases,
|P| is of the order of O(qen

2) and the number of addends in optimisation problem
(1) is quadratic in the number of samples. In [31, 11], the objective function (1)
is minimised by solving the corresponding Lagrange dual problem:

max
↵

↵>1lm � 1

2
↵>AXX>A>↵

subject to 0  ↵ij  �, 8(i, j) 2 P,
(2)

where m = |P|, 1lm is a m-dimensional vector of all ones, ↵ 2 IRm are the
Lagrangian multipliers, and A 2 IRm⇥n is a sparse matrix with Ak,i = 1 and
Ak,j = �1 if (i, j) 2 P and zero otherwise. It is easy to see that this approach
quickly becomes intractable, because constructing the matrix AXX>A> re-
quires O(n4) space and solving the quadratic problem (2) requires O(pn6) time.

Van Belle et al. [32] addressed this problem by reducing the size of P to O(n)
elements: they only considered pairs (i, j), where j is the largest uncensored
sample with yi > yj . However, this approach e↵ectively simplifies the objective
function (1) and usually leads to a di↵erent solution. In [26], we proposed an
e�cient optimisation scheme for solving (1) by substituting the hinge loss for the

An Efficient Training Algorithm for Kernel Survival Support Vector Machines 3
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squared hinge loss, and using truncated Newton optimisation and order statistics
trees to avoid explicitly constructing all pairwise comparisons, resulting in a
much reduced time and space complexity. However, the optimisation scheme is
only applicable to training a linear model. To circumvent this problem, the data
can be transformed via Kernel PCA [27] before training, which e↵ectively results
in a non-linear model in the original feature space [26, 4]. The disadvantage of
this approach is that it requires O(n2p) operations to construct the kernel matrix
– assuming evaluating the kernel function costs O(p) – and O(n3) to perform
singular value decomposition. Kuo et al. [21] proposed an alternative approach
for Rank SVM that allows directly optimising the primal objective function in
the non-linear case too. It is natural to adapt this approach for training a non-
linear SSVM, which we will describe next.

2.2 E�cient Training of a Kernel Survival Support Vector Machine

The main idea to obtain a non-linear decision function is that the objective
function (1) is reformulated with respect to finding a function f : X ! IR from a
reproducing kernel Hilbert space Hk with associated kernel function k : X ⇥X !
IR that maps the input z 2 X to a real value (usually X ⇢ IRp):

min
f2Hk

1

2
kfk2

Hk
+

�

2

X

(i,j)2P
max(0, 1 � (f(xi) � f(xj)))

2,

where we substituted the hinge loss for the squared hinge loss, because the latter
is di↵erentiable. Using the representer theorem [20, 3, 21], the function f can be
expressed as f(z) =

Pn
i=1 �ik(xi, z), which results in the objective function

R(�) =
1

2

nX

i=1

nX

j=1

�i�jk(xi, xj)

+
�

2

X

(i,j)2P
max

 
0, 1 �

nX

l=1

�l(k(xl, xi) � k(xl, xj))

!2

,

where the norm kfk2
Hk

can be computed by using the reproducing kernel prop-
erty f(z) = hf, k(z, ·)i and hk(z, ·), k(z0, ·)i = k(z, z0). The objective function
can be expressed in matrix form through the n ⇥ n symmetric positive definite
kernel matrix K with entries Ki,j = k(xi, xj):

R(�) =
1

2
�>K� +

�

2
(1lm � AK�)

>
D� (1lm � AK�) , (3)

where � = (�1, . . . ,�n)> are the coe�cients and D� is a m⇥m diagonal matrix
that has an entry for each (i, j) 2 P that indicates whether this pair is a support
pair, i.e., 1 � (f(xi) � f(xj)) > 0. For the k-th item of P, representing the pair
(i, j), the corresponding entry in D� is defined as

(D�)k,k =

(
1 if f(xj) > f(xi) � 1 , Kj� > Ki� � 1,

0 else,

4 Polsterl, Navab and Katouzian
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where Ki denotes the i-th row of kernel matrix K. Note that in contrast to the
Lagrangian multipliers ↵ in (2), � in (3) is unconstrained and usually dense.

The objective function (3) of the non-linear SSVM is similar to the linear
model discussed in [26]; in fact, R(�) is di↵erentiable and convex with respect
to �, which allows employing truncated Newton optimisation [7]. The first- and
second-order partial derivatives have the form

@R(�)

@�
= K� + �K> �A>D�AK� � A>D�1lm

�
, (4)

@2R(�)

@�@�> = K + �K>A>D�AK, (5)

where the generalised Hessian is used in the second derivative, because R(�) is
not twice di↵erentiable at � [18].

Note that the expression A>D�A appears in eqs. (3) to (5). Right multiply-
ing A> by the diagonal matrix D� has the e↵ect that rows not corresponding
to support pairs – pairs (i, j) 2 P for which 1� (Ki��Kj�) < 0 – are dropped
from the matrix A. Thus, A>D�A can be simplified by expressing it in terms of
a new matrix A� 2 {�1, 0, 1}m�,n as A>D�A = A>

�A�, where m� denotes the
number of support pairs in P. Thus, the objective function and its derivatives
can be compactly expressed as

R(�) =
1

2
�>K� +

�

2

�
m� + �>K

�
A>

�A�K� � 2A>
� 1lm�

��
,

@R(�)

@�
= K� + �K

�
A>

�A�K� � A�1lm�

�
,

@2R(�)

@�@�> = K + �KA>
�A�K.

The gradient and Hessian of the non-linear SSVM share properties with the
corresponding functions of the linear model. Therefore, we can adapt the e�cient
training algorithm for linear SSVM [26] with only small modifications, thereby
avoiding explicitly constructing the matrix A�, which would require O(qen

2)
space. Since the derivation for the non-linear case is very similar to the linear
case, we only present the final result here and refer to [26] for details.

In each iteration of truncated Newton optimisation, a Hessian-vector product
needs to be computed. The second term in this product involves A� and becomes

�KA>
�A�Kv = �K

0
B@

(l+1 + l�1 )K1v � (�+
1 + ��

1 )
...

(l+n + l�n )Knv � (�+
n + ��

n )

1
CA , (6)

where, in analogy to the linear SSVM,

SV+
i = {s | ys > yi ^ Ks� < Ki� + 1 ^ �i = 1}, l+i = |SV+

i |,
SV�

i = {s | ys < yi ^ Ks� > Ki� � 1 ^ �s = 1}, l�i = |SV�
i |,

An Efficient Training Algorithm for Kernel Survival Support Vector Machines 5
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�+
i =

P
s2SV+

i
Ksv, and ��

i =
P

s2SV�
i

Ksv. The values l+i , l�i , �+
i , and ��

i can

be obtained in logarithmic time by first sorting according to the predicted scores
f(xi) = Ki� and subsequently incrementally constructing one order statistic
tree to hold SV+

i and SV�
i , respectively [26, 22, 21]. Finally, the risk score of

experiencing an event for a new data point xnew can be estimated by f̂(xnew) =Pn
i=1 �̂ik(xi, xnew), where �̂ = argmin R(�).

2.3 Complexity

The overall complexity of the training algorithm for a linear SSVM is

[O(n log n) + O(np + p + n log n)] · N̄CG · NNewton,

where N̄CG and NNewton are the average number of conjugate gradient iterations
and the total number of Newton updates, respectively [26]. For the non-linear
model, we first have to construct the n ⇥ n kernel matrix K. If K cannot
be stored in memory, computing the product Kiv requires n evaluations of
the kernel function and n operations to compute the product. If evaluating the
kernel function costs O(p), the overall complexity is O(n2p). Thus, computing
the Hessian-vector product in the non-linear case consists of three steps, which
have the following complexities:

1. O(n3p) to compute Kiv for all i = 1, . . . , n,
2. O(n log n) to sort samples according to values of Kiv,
3. O(n2 + n + n log n) to calculate the Hessian-vector product via (6).

This clearly shows that, in contrast to training a linear model, computing the
sum over all comparable pairs is no longer the most time consuming task in
minimising R(�) in eq. (3). Instead, computing Kv is the dominating factor.

If the number of samples in the training data is small, the kernel matrix
can be computed once and stored in memory thereafter, which results in a one-
time cost of O(n2p). It reduces the costs to compute Kv to O(n2) and the
remaining costs remain the same. Although pre-computing the kernel matrix is
an improvement, computing Kv in each conjugate gradient iteration remains the
bottleneck. The overall complexity of training a non-linear SSVM with truncated
Newton optimisation and order statistics trees is

O(n2p) +
⇥
O(n log n) + O(n2 + n + n log n)

⇤
· N̄CG · NNewton. (7)

Note that direct optimisation of the non-linear objective function is preferred
over using Kernel PCA to transform the data before training, because it avoids
O(n3) operations corresponding to the singular value decomposition of K.

3 Comparison of Survival Support Vector Machines

3.1 Datasets

Synthetic Data Synthetic survival data of varying size was generated following
[1]. Each dataset consisted of one uniformly distributed feature in the interval

6 Polsterl, Navab and Katouzian
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Table 1. Overview of datasets used in our experiments.

Dataset n p Events Outcome

AIDS study [14] 1, 151 11 96 (8.3%) AIDS defining event
Coronary artery disease [25] 1, 106 56 149 (13.5%) Myocardial infarction

or death
Framingham o↵spring [17] 4, 892 150 1,166 (23.8%) Coronary vessel disease
Veteran’s Lung Cancer [16] 137 6 128 (93.4%) Death
Worcester Heart Attack Study [14] 500 14 215 (43.0%) Death

[18; 89], denoting age, one binary variable denoting sex, drawn from a bino-
mial distribution with probability 0.5, and a categorical variable with 3 equally
distributed levels. In addition, 10 numeric features were sampled from a multi-
variate normal distribution N10(µ, I) with mean µ = (0, 0, 0.3, 0.15, 0.8, 0.67,
0.2, 0, 0.12, 0.3)>. Survival times ti were drawn from a Weibull distribution with
k = 1 (constant hazard rate) and � = 0.9 according to the formula presented in

[1]: ti = [(� log ui)/(� exp(f(xi)))]
1/k

, where ui is uniformly distributed within
[0; 1], f(·) denotes a non-linear model that relates the features to the survival
time (see below), and xi 2 IR14 is the feature vector of the i-th subject. The
censoring time ci was drawn from a uniform distribution in the interval [0; ⌧ ],
where ⌧ was chosen such that about 20% of survival times were censored in
the training data. Survival times in the test data were not subject to censoring
to eliminate the e↵ect of censoring on performance estimation. The non-linear
model f(x) was defined as

f(x) = 0.05xage + 0.8xsex + 0.03x2
N1 + 0.3x�2

N2 � 0.1xN7 + 0.6xN4/xN2

+xN1/xN8 � 0.9 tanh(xN6)/xN9 +0.09xC1/xsex +0.03xC2/xsex +0.3xC3/xsex,

where C1, C2, and C3 correspond to dummy codes of a categorical feature with
three categories and N1 to N10 to continuous features sampled from a multi-
variate normal distribution. Note that the 3rd, 9th and 10th numeric feature are
associated with a zero coe�cient, thus do not a↵ect the survival time. We gen-
erated 100 pairs of train and test data of 1,500 samples each by multiplying the
coe�cients by a random scaling factor uniformly drawn from [�1; 1].

Real Data In the second set of experiments, we focused on 5 real-world datasets
of varying size, number of features, and amount of censoring (see table 1). The
Framingham o↵spring and the coronary artery disease data contained missing
values, which were imputed using multivariate imputation using chained equa-
tions with random forest models [9]. To ease computational resources for val-
idation and since the missing values problem was not the focus, one multiple
imputed dataset was randomly picked and analysed. Finally, we normalised con-
tinuous variables to have zero mean and unit variance.

An Efficient Training Algorithm for Kernel Survival Support Vector Machines 7
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3.2 Prediction Performance

Experiments presented in this section focus on the comparison of the predictive
performance of the survival SVM on 100 synthetically generated datasets as well
as 5 real-world data sets against 3 alternative survival models:

1. Simple SSVM with hinge loss and P restricted to pairs (i, j), where j is the
largest uncensored sample with yi > yj [32],

2. Minlip survival model by Van Belle et al. [33],
3. linear SSVM based on the e�cient training scheme proposed in [26],
4. Cox’s proportional hazards model [5] with `2 penalty.

The regularisation parameter � for SSVM and Minlip controls the weight of the
(squared) hinge loss, whereas for Cox’s proportional hazards model, it controls
the weight of the `2 penalty. Optimal hyper-parameters were determined via
grid search by evaluating each configuration using ten random 80%/20% splits
of the training data. The parameters that on average performed best across these
ten partitions were ultimately selected and the model was re-trained on the full
training data using optimal hyper-parameters. We used Harrell’s concordance
index (c-index) [12] – a generalisation of Kendall’s ⌧ to right censored survival
data – to estimate the performance of a particular hyper-parameter configura-
tion. In the grid search, � was chosen from the set {2�12, 2�10, . . . , 212}. The
maximum number of iterations of Newton’s method was 200.

In our cross-validation experiments on real-world data, the test data was sub-
ject to censoring too, hence performance was measured by Harrell’s and Uno’s
c-index [12, 29] and the integrated area under the time-dependent, cumulative-
dynamic ROC curve (iAUC; [30, 15]). The latter was evaluated at time points
corresponding to the 10%, 20%, . . . , 80% percentile of the observed time points
in the complete dataset. For Uno’s c-index the truncation time was the 80%
percentile of the observed time points in the complete dataset. For all three
measures, the values 0 and 1 indicate a completely wrong and perfectly cor-
rect prediction, respectively. Finally, we used Friedman’s test and the Nemenyi
post-hoc test to determine whether the performance di↵erence between any two
methods is statistically significant at the 0.05 level [8].

Synthetic Data The first set of experiments on synthetic data served as a ref-
erence on how kernel-based survival models compare to each other in a controlled
setup. We performed experiments using an RBF kernel and the clinical kernel [6].
Figure 1 summarises the results on 100 synthetically generated datasets, where
all survival times in the test data were uncensored, which leads to unbiased and
consistent estimates of the c-index. The experiments revealed that using a clin-
ical kernel was advantageous in all experiments (see fig. 1). Using the clinical
kernel in combination with any of the SSVM models resulted in a significant
improvement over the corresponding model with RBF kernel and linear model,
respectively. Regarding the RBF kernel, it improved the performance over a
linear model, except for the simple SSVM, which did not perform significantly

8 Polsterl, Navab and Katouzian
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Fig. 1. Performance of the proposed ranking-based survival support vector machine
compared against other kernel-based survival models and Cox’s proportional hazards
model on 100 synthetically generated datasets. In brackets: the kernel function used.

better than the linear SSVM. The simple SSVM su↵ers from using a simplified
objective function with a restricted set of comparable pairs P, despite using an
RBF kernel. This clearly indicates that reducing the size of P to address the
complexity of training a non-linear SSVM, as proposed in [32], is inadequate.
Although, the Minlip model is based on the same set of comparable pairs, the
change in loss function is able to compensate for that – to some degree. Our pro-
posed optimisation scheme and the Minlip model performed comparably (both
for clinical and RBF kernel).

Real Data In this section, we will present results on 5 real-world datasets
(see table 1) based on 5-fold cross-validation and the clinical kernel [6], which
is preferred if feature vectors are a mix of continuous and categorical features
as demonstrated above. Table 2 summarises our results. In general, performance
measures correlated well and results support our conclusions from experiments
on synthetic data described above. The simplified SSVM performed poorly: it
ranked last in all experiments. In particular, it was outperformed by the linear
SSVM, which considers all comparable pairs in P, which is evidence that re-
stricting P is an unlikely approach to train a non-linear SSVM e�ciently. The
Minlip model was outperformed by the proposed SSVM on two datasets (AIDS
study and coronary artery disease). It only performed better on the veteran’s
lung cancer data set and was comparable in the remaining experiments. The lin-
ear SSVM achieved comparable performance to the SSVM with clinical kernel on
all datasets, except the coronary artery disease data. Finally, Cox’s proportional
hazard model often performed very well on the real-world datasets, although
it does not model non-linearities explicitly. The performance di↵erence between

An Efficient Training Algorithm for Kernel Survival Support Vector Machines 9
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Table 2. Average cross-validation performance on real-world datasets. iAUC: inte-
grated area under the time-dependent, cumulative-dynamic ROC curve.

SSVM SSVM Minlip SSVM Cox
(ours) (simple) (linear)

AIDS study
Harrel’s c 0.759 0.682 0.729 0.767 0.770
Uno’s c 0.711 0.621 0.560 0.659 0.663
iAUC 0.759 0.685 0.724 0.766 0.771

Coronary artery disease
Harrel’s c 0.739 0.645 0.698 0.706 0.768
Uno’s c 0.780 0.751 0.745 0.730 0.732
iAUC 0.753 0.641 0.703 0.716 0.777

Framingham o↵spring
Harrel’s c 0.778 0.707 0.786 0.780 0.785
Uno’s c 0.732 0.674 0.724 0.699 0.742
iAUC 0.827 0.742 0.837 0.829 0.832

Lung cancer
Harrel’s c 0.676 0.605 0.719 0.716 0.716
Uno’s c 0.664 0.605 0.716 0.709 0.712
iAUC 0.740 0.630 0.790 0.783 0.780

WHAS
Harrel’s c 0.768 0.724 0.774 0.770 0.770
Uno’s c 0.772 0.730 0.778 0.775 0.773
iAUC 0.799 0.749 0.801 0.796 0.796

our SSVM and the Minlip model can be explained when considering that they
not only di↵er in the loss function, but also in the definition of the set P. While
our SSVM is able to consider all (valid) pairwise relationships in the training
data, the Minlip model only considers a small subset of pairs. This turned out
to be problematic when the amount of censoring is high, as it is the case for
the AIDS and coronary artery disease studies, which contained less than 15%
uncensored records (see table 1). In this setting, training a Minlip model is based
on a much smaller set of comparable pairs than what is available to our SSVM,
which ultimately leads to a Minlip model that generalises badly. Therefore, our
proposed e�cient optimisation scheme is preferred both with respect to runtime
and predictive performance. When considering all experiments together, statis-
tical analysis [8] suggests that the predictive performance of all five survival
models is comparably.

3.3 Conclusion

We proposed an e�cient method for training non-linear ranking-based survival
support vector machines. Our algorithm is a straightforward extension of our
previously proposed training algorithm for linear survival support vector ma-
chines. Our optimisation scheme allows analysing datasets of much larger size
than previous training algorithms, mostly by reducing the space complexity from
O(n4) to O(n2), and is the preferred choice when learning from survival data
with high amounts of right censoring. This opens up the opportunity to build
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survival models that can utilise large amounts of complex, structured data, such
as graphs and strings.
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Abstract. Flow cytometry is able measure up to 50.000 cells in vari-
ous dimensions in seconds of time. This large amount of data gives rise
to the possibility of making predictions at the single-cell level, however,
applied to bacterial populations a systemic investigation lacks. In or-
der to combat this deficiency, we cultivated twenty individual bacterial
populations and measured them through flow cytometry. By creating in
silico communities we are able to use supervised machine learning tech-
niques in order to examine to what extent single-cell predictions can be
made; this can be used to identify the community composition. We show
that for more than half of the communities consisting out of two bacterial
populations we can identify single cells with an accuracy >90%. Further-
more we prove that in silico communities can be used to identify their in
vitro counterpart communities. This result leads to the conclusion that
in silico communities form a viable representation for synthetic bacterial
communities, opening up new opportunities for the analysis of bacterial
flow cytometric data and for the experimental study of low-complexity
communities.

Keywords: flow cytometry, microbiology, in silico communities, syn-
thetic bacterial communities, linear discriminant analysis, random forests

1 Introduction

Flow cytometry (FCM) is an experimental technique which characterizes indi-
vidual cells in terms of fluorescence and scatter signals; this results in a multidi-
mensional description of every cell. As the analysis of cells is increasing (up to
50.000 of cells per second), alongside with the dimensionality of the data (up to
50 dimensions will be available soon), the field of FCM bioinformatics is grow-
ing accordingly [11]. A promising approach of analyzing FCM data is the use
of supervised machine learning techniques in order to identify single cells, an
approach which has been used in for example the recognition of leukemia [17] or
to identify various populations of phytoplankton [3], [12].

However, applied to bacterial populations this approach seems to be lacking a
thorough investigation. Two reports exist, of which the first analyzed the e↵ect of
various cocktails of fluorescent staining [6], and the second the extent to which



individual cells can be classified using multiple but only scatter signals [13].
However the number of populations used in latter studies is small, remaining
only to the binary setting.

To investigate this issue more thoroughly, we cultivated twenty di↵erent bac-
terial populations and measured them individually through FCM. We propose
the use of in silico communities, communities we created by aggregating the data
coming from these individual cultures. This approach leads to two advantages;
first, we are able to use supervised machine learning methods as we know the
individual label of every cell. Second, we have the ability to create a wide spec-
trum of bacterial communities ranging from low complexity to high complexity,
and ranging from low evenness (i.e., unevenly distributed populations) to high
evenness communities. For example, for a population richness of S = 2 we al-
ready have the possibility of analyzing 190 di↵erent bacterial communities, only
considering the population richness.

In the first section we perform a thorough analysis regarding the possibility
of making single-cell predictions. We will show that for a binary setting we are
able to achieve high accuracies for a majority of possible bacterial communities.
Next, we consider a multiclass setting as well, showing that FCM data should be
feasible for increasing population richness. We chose methods which extend to a
multiclass setting in a natural way. For now we opted to use Linear Discriminant
analysis (LDA), which is an established method in microbial ecology to perform
multivariate analyses [14], and Random Forests, known for its high performance
in various applications with only one hyperparameter to tune [8].

In the second section of the paper we show that we can use the statistical
properties of in silico communities in order to classify individual cells contained in
resembling (i.e., containing the same bacterial populations) in vitro communities.
This is not self-evident for two reasons; first, flow cytometric measurements
su↵er from technical variations and second, it has been proven that bacterial
populations exhibit heterogeneous behavior which is reflected in FCM data [18].
In order to test this hypothesis, we created so-called abundance gradients; we
define an abundance gradient as a set of in vitro communities which contain
the same two bacterial populations, but in varying abundances. We will show
that we are able to retrieve these relative abundances using classifiers which are
trained on an evenly distributed in silico community. This result forms a strong
argument that flow cytometric in silico communities form a proper representation
for synthetic bacterial communities, and thus can be used for further study;
furthermore, it enables researchers the use of supervised methods combined with
FCM in order to analyze low-complexity communities.

2 Exploratory analysis of in silico communities

In order to systematically investigate the possibility of making single-cell pre-
dictions, we have cultivated twenty bacterial populations and measured them
through FCM; a full list can be found in Tab. 1.
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Table 1. List of cultivated bacterial populations measured through FCM
(dataset 1).

Bacterial population Culture collection reference

Agrobacter rhizogenes UFZ requested [16]
Bacillus subtilis LMG 7135
Burkholderia ambifaria LMG 19182
Citrobacter freundii DSMZ 15979
Cupriavidus necator LMG 1201
Cupriavidus pinatubonensis LMG 1197
Edwardsialla ictaluri LMG 7860
Enterobacter aerogenes DSMZ 30053
Escherichia coli DSMZ 2840
Janthinobacterium sp. B3 UFZ requested [16]
Klebsiella oxytoca LMG 3055
Lactobacillus plantarum LMG 9211
Micrococcus luteus UFZ requested [16]
Pseudomonas fluorescens R 23898
Pseudomonas putida R 17801
Rhizobium radiobacter LMG 287
Shewanella oneidensis LMG 19005
Sphingomonas aromaticivorans LMG 18303
Streptococcus salivarius LMG 11489
Zymomonas mobilis subsp. mobilis LMG 460

For S = 2 we have analyzed all possible pairwise combinations (this number
equals 190). We created in silico communities sampling an equal amount of 5.000
cells for every population; this means that an in silico community consists out
of 10.000 cells. We trained a classifier using LDA and Random Forests on 70%
of the in silico community; hereafter we predicted the population to which cells
belong to contained in the 30% held out test set. We note that there was no need
to tune the Random Forest classifier; using the preset

p
K, with K being the

total number of available features to choose from at every split (K = 12, of which
eight are fluorescence signals and four are scatter signals), gives rise to (near-
)optimal results, in accordance with [2]. We note that after having performed
ten-fold cross-validation for K on twenty randomly picked in silico communities,
the increase in accuracy was 0.007 at the utmost. We expressed our performance
for every in silico community in terms of the area under the receiver operating
characteristic curve (AUC) and the accuracy (Fig. 1).

We note that the ensemble of pairwise combinations of populations give rise
to performance accuracies ranging from 0.99 to near random guessing predic-
tions; in other words, we were not biased towards highly discriminative popu-
lations. We have further summarized our results in Tab. 2, reporting the mean
AUC and accuracy, along with their standard deviations, and the percentage of
communities giving rise to performances higher than 0.90. Based on these num-
bers, we conclude that we are able to achieve high accuracies for a significant
amount of possible communities. We note that a combination of E. ictaluri -
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Table 2. Summary of analysis using LDA and Random Forests (RF) for
S = 2. We denote the mean AUC (µAUC) and accuracy (µacc), along with the standard
deviation (�AUC/acc) and the percentage of communities reporting a performance of
0.90 or higher.

µAUC µacc �AUC �acc AUC > 0.90 acc > 0.90

LDA 0.90 0.83 0.089 0.088 62% 27%
RF 0.95 0.90 0.071 0.085 82% 65%

S. aromaticivorans results in the highest AUC of 0.999, a combination of K.
oxytoca - Z. m. subsp. mobilis results in the highest accuracy, being 0.996.

Generally using Random Forests results in better performances than LDA,
however, this is not always the case. 45% of the possible in silico communities
report an increase in AUC of less than 0.03, 17% report an increase in accuracy
less than 0.03.

In order to assess the fruitfulness of analyzing bacterial communities in a
multiclass setting, we created 150 randomly chosen in silico communities for
every increment of S, for which populations are evenly sampled (again 5.000
cells per population); this means that the total amount of cells contained in an
in silico community Ntot equals Ntot = S ⇥ 5.000. We used the same approach
as described previously to perform LDA and Random Forests (i.e., creating a
training set using 70% of the data and a test set using the other 30% of the
data). We calculated the accuracy for every test set, after which we calculated
the mean accuracy accompanied with its confidence-interval (CI) for every S
(Fig. 2. )

For all values of S one is able to make single-cell predictions significantly
better than random guessing. As S increases, both the mean accuracy and the
size of the CI decline. This is due to the fact that for growing population richness,
the degree in overlap between populations in the multidimensional ‘FCM-space’
starts growing. Therefore it is harder for classifiers to make a distinction between
populations, which results in performances that are lower and more centered.

The di↵erence in performance between the two classifiers increases as S in-
creases. This means that for communities with a low richness (S = 2, 3) LDA
might every so often be a su�cient method to perform single-cell predictions,
however this is not always the case. This also means that although for low S
a linear combination of variables already discriminates populations quite well,
predictions can be improved by choosing classifiers which are able to combine
variables in a non-linear way, especially for higher complexity communities.

3 Identifying bacterial populations in synthetic
communities using in silico communities

We created three abundance gradients in order to verify to what extent an in
silico community is able to identify its an in vitro community containing the
same bacterial populations. We chose combinations which initially (according
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Table 3. Three di↵erent combinations (Comb.) of bacterial populations used
to create abundance gradients (dataset 2).

Comb. Population 1 Population 2

1 P. fluorescens P. Putida
2 A. rhizogenes Janthinobacterium sp. B3
3 M. luteus S. oneidensis

to the analysis described above) reported a low (Comb. 1), medium (Comb. 2)
and high performance (Comb. 3), respectively (Tab. 3). As we do not know the
individual labels of the cells contained in these communities, we predicted the
relative abundance of populations present in a community, which can be derived
by summing the predicted labels of individual cells. We express the performance
in terms of the root mean squared error (RMSE):

RMSE =

rPn
i=1(pi � p̂i)2

n
, (1)

with p being the target relative abundance to predict, p̂ the predicted relative
abundance and n the the total number of bacterial communities constituting the
abundance gradient; n = 13 in this case1. Because we measured the populations
individually beforehand, we are able to construct the same abundance gradient
in silico. This enables us to not only carefully examine to what extent these
abundances can be retrieved, but also to compare the in silico results with the
in vitro results. The resulting RMSE is summarized in Tab. 4, along with the
mean AUC calculated for the ensemble of communities constituting in silico
abundance gradients; the predicted abundance gradients are visualized in Fig.
3.

Comb. 2 (Figs. 3CD) and 3 (Figs. 3EF) are well-predicted as opposed to
Comb. 1 (Figs. 3AB), which is reflected in the RMSE; the mean AUC however
reports quite a high AUC for Comb. 1 when using Random Forests, albeit still
lower than for Comb. 2 and 3. The results for the in vitro analysis of Comb.
2 and 3 give rise to a similar RMSE, although we expected from initial perfor-
mances that these values would be di↵erent. To investigate this issue, we added
additional results in Tab. 5. We report the performance of a classifier in terms
of the accuracy and the AUC trained on 70% and evaluated on 30% of the new
in silico communities; in other words, classifiers were trained in the same way
as in the previous section, so that a succinct comparison is possible with the
originally reported values (*).

We note that although the performances are similar for Comb. 3, this is not
the case for Comb. 1 and 2. Whereas the performances for Comb. 1 initially
reported higher, the performances for Comb. 2 initially reported lower. This ex-
plains why the results for the in vitro analysis for Comb. 2 and 3. report similar

1 We have constructed communities with the following relative abundances (popula-
tion 1/population 2): 1%/99%, 5%/95%, 10%/90%, 20%/80%, 30%/70%, 40%/60%,
50%/50%, 60%/40%, 70%/30%, 80%/20%, 90%/10%, 95%/5% and 99%/1%.
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Table 4. RMSE and mean AUC (µAUC) for predicted abundance gradients.
RMSE has been calculated between the predicted gradients and the target gradients,
both in silico and in vitro, having used LDA and a Random Forest classifier. µAUC has
been calculated by calculating the AUC for every in silico community, and averaging
over all in silico communities constituting the respective abundance gradient.

Comb. 1 Comb. 2 Comb. 3

RMSE LDA in silico 0.29 0.0060 0.10
RMSE RF in silico 0.21 0.0036 0.022
RMSE LDA in vitro 0.51 0.036 0.096
RMSE RF in vitro 0.48 0.036 0.032

µAUC LDA in silico 0.64 1.0 0.93
µAUC RF in silico 0.88 1.0 1.0
�AUC LDA in silico 0.022 0.00070 0.0054
�AUC RF in silico 0.055 0.00039 0.00088

Table 5. Comparison of performances using LDA and Random Forests using
datasets 1 as opposed to dataset 2. Performance using LDA and a Random Forest
classifier for in-silico communities created with the same populations as in Comb. 1, 2
and 3, using the data reported in the previous section (dataset 1, denoted with *) and
the abundance gradient data (dataset 2). These in silico communities are constructed
and analyzed in exactly the same way, that is, they are evenly distributed communities
consisting out of the same number of cells. Classifiers are trained on 70% of the data
and evaluated on the opposite 30% test data.

Comb. 1 Comb. 2 Comb. 3

AUC LDA* 0.64 0.82 0.96
AUC LDA 0.62 1.0 0.93
acc LDA* 0.62 0.77 0.92
acc LDA 0.59 0.99 0.91
AUC RF* 0.82 0.94 1.0
AUC RF 0.70 1.0 0.99
acc RF* 0.75 0.87 0.99
acc RF 0.64 1.0 0.97

results. However, this implies that although our approach is fruitful to analyze
synthetic communities, performances are not yet exactly reproducible when in-
dividual bacterial populations are measured at di↵erent time points through
FCM.

Furthermore, we emphasize the similar behavior between the in silico analysis
(Fig. 3, left panel) and in vitro analysis (Fig. 3, right panel). We see that results
are almost identical using either LDA or a Random Forest classifier analyzing
Comb. 2. Moreover, inspecting Comb. 3, we note that using Random Forests
increases the performance significantly, both for the in silico communities and in
vitro communities; LDA su↵ers from a systematic bias, which is almost entirely
(but not in full) reduced when one uses Random Forests.
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4 Conclusion

After a thorough survey we can state that it is possible to predict the population
to which bacterial single cells belong based on FCM data for low-complexity
communities. Furthermore we have shown in a rigorous manner that in silico
communities can be used to identify their in vitro counterpart communities. This
leads to the conclusion that in silico communities form a viable representation for
synthetic bacterial communities, and thus, we are allowed to use these in silico
communities for further study. Supervised machine learning methods become
therefore available to study issues as FCM data transformation [9] or feature
selection, a topic studied in the field of immunology [10], but which seems te
be lacking thus far in the field of microbiology. For low-complexity communities
‘o↵-the-shelf’ classifiers will most of the time already su�ce to identify bacterial
single cells. The outcome of this research therefore complies with the motivation
to integrate supervised machine learning methods into standard FCM software
[4].

A natural extension of this research would be to find the optimal multiclass
method to analyze FCM data; a number of possibilities exist, ranging from binary
classifiers which are naturally extendable to a multiclass setting or a combination
of binary classifiers using a one-versus-one (OVO) or one-versus-all (OVA) ap-
proach [1]. However, it has to be noted that the performance of classifiers is not
yet reproducible. The reason behind this is that bacterial populations exhibit
heterogeneous behavior, which is reflected in FCM data [18]. However, FCM
has been suggested to further quantify bacterial heterogeneity [5],[7], research
in which in silico communities in combination with supervised machine learning
methods might prove its value.
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Fig. 1. Ranked performances using LDA and Random Forests for S = 2. A
Ranked AUC. B Ranked accuracy. Performances are visualized for allevenly distributed
190 in silico communities and have been ranked in descending order according to the
performances resulting from using Random Forests, accompanied with performances
resulting from using LDA on the same in silico community. The performances have
been calculated on a 30% held-out test set; figure taken from [15].
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Fig. 2. Mean accuracy for increasing population richness using LDA and
Random Forests. Mean accuracy along with a 68%-CI is displayed, resulting from an
analysis using LDA and Random Forests for 150 randomly chosen in silico communities
for S = 2, ..., 18 (for S = 19 and S = 20 this number becomes 20 and 1 respectively);
every in silico community is evenly distributed. The accuracy has been calculated on
a 30% held-out test set, after which the mean accuracy is calculated for the ensemble
of silico communities for every increment of S; figure taken from [15].
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Faculty of Mathematics and Computer Science, Jagiellonian University
Lojasiewicza 6, 30-348 Kraków, Poland

{szymon.nakoneczny, marek.smieja}@ii.uj.edu.pl

Abstract. Virtual screening is a process in which databases of chemical
compounds are searched in order to find structures characterized with
a high biological activity, possible drug candidates [12]. Our goal is to
combine the natural language processing methods with SMILES, a text
representation of compounds, in the classification of active compounds.
Since SMILES encodes a graph structure of a compound into a sequence
of symbols, it is not reasonable to build a language model directly from
SMILES. In this paper we propose various strategies to adjust the un-
derlying representation to create the best possible language model of
compounds. The introduced modifications are verified in an extensive
experimental study. The results show that the proposed approach out-
performs classical fingerprint representations and does not require any
specialized chemical knowledge.

Keywords: n-gram language model, bag-of-n-grams, support vector ma-
chine, virtual screening, SMILES

1 Introduction

Only a small percentage of a huge number of organic compounds can serve as
drugs. As it is not possible to synthesize all of them in a laboratory, the first
move is to find biological active compounds by means of a computer analysis.
Before machine learning, a common approach was to simulate a compound to
target protein docking and estimate a ligand activity [13]. Currently, one of the
most popular methods is to represent chemical compounds as a vector called
fingerprint and analyze them with machine learning approaches. Each position
in this representation refers to some substructure of a compound’s graph and
often in order to use the most meaningful substructures, a huge number of them
is being handcrafted by chemists [11].

Our goal is to apply natural language processing methods with a text repre-
sentation called SMILES. In this representation, a compound graph is flattened
into a sequence of symbols which makes the structure information much harder
to understand. Fortunately, working with a representation which computational
needs matches the use of fingerprints while still having all of the information
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encoded inside of the representation opens new possibilities for applying ma-
chine learning methods. The e↵ort is taken to use and improve n-gram language
model and bag-of-words representation known from NLP. In scope of improve-
ments, SMILES modifications with an aim to increase its informativity will be
tested. The best modifications were chosen with experimental analysis which
also proves that our solution can achieve higher scores than standard fingerprint
representations without a use of any specialized chemical knowledge.

The paper is organized as follows. Next section gives a brief review of re-
lated SMILES based approaches. Section 3 provides a more detailed description
of SMILES representation and recalls n-gram language model. The proposed
modifications, which allow to combine SMILES with NLP, are placed at the
end of this section. Experimental results are included in Section 4. Finally, the
conclusion is given.

2 Related work

The SMILES-based approaches to chemical compounds analysis are rather rare.
A problem of bioactivity prediction with text representation was tackled by
Apilak Worachartcheewan et al. [16]. The idea of this approach is to define a
set of features based on a presence of some abstract subsequences in SMILES,
which should be relevant for activity analysis, and then optimizing the model
with Monte Carlo approach. It is worth to mention that this approach is very
similar to building a structural fingerprint.

David Vidal et al. [14] proposed to build a general vector representation based
on all subsequences of a given length found in SMILES. This representation can
be then used in any task concerning chemical compounds analysis.

In comparison to those ideas, our solution is mostly motivated by natural
language processing achievements. Due to the n-gram language model charac-
teristics, subsequences used are varying in length and their set is not limited
by any domain knowledge. It is a model objective to learn the value of subse-
quences given the problem of bioactivity prediction. Thereby, our approach does
not require much of organic chemistry knowledge.

3 Natural language processing with SMILES

In this section, we provide more detailed description of SMILES representation
and recall the n-gram language model. We also propose here various strategies
how to combine these two tools to create an e�cient representation for applying
machine learning methods.

3.1 SMILES representations

SMILES (Simplified Molecular Input Line Entry System) is a simple, easy to un-
derstand language in which molecules and chemical reactions can be written with
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Fig. 1: Example of SMILES representation.

ASCII characters representing atoms and bonds [3]. Its most important advan-
tage is an ability to uniquely identify chemical compound, which is something
that simple molecular formula does not provide, while taking approximately
50%-70% less space than corresponding matrix representation. SMILES is cre-
ated by traversing a compound graph and writing down atoms and bonds along
the way.

Basic rules which govern this process are (see Figure 1 for example):

– Atoms are represented by their atomic symbol. If an atom does not belong to
subset of organic elements or it is an isotope or its charge has to be specified,
it is putted with all this information into square brackets. Besides the isotope
case, hydrogen atoms are always implied by compound structure in which
case they are being omitted.

– Single, double and triple bonds are represented by symbols ’-’, ’=’ and ’#’
respectively. Th default bond is a single one and ’-’ symbol can be omitted.

– Branches are putted inside brackets.
– Cyclic structures are represented by removing one of the bonds in compound

graph in order to create a tree. Removed bond is then marked with one and
same digit following an atom which opens and closes this bond. Digits can
be reused after a bond closing and in rare cases when number higher than 9
is used, it has to be preceded with ’%’ symbol.

– Not connected structures are written individually and separated with a ’.’
symbol.

Extensions to SMILES covers aromaticity and unique representation. In case of
aromaticity, the idea is to encode this information with small atomic symbols,
thanks to which it can be easily detected without any algorithm and SMILES
is being even further simplified. The example is aromatic ring C1=COC=C1
which will be now written as c1cocc1. The rules described above, starting with
an order in which a graph is being traversed, are not deterministic. The idea
with canonical SMILES is to create additional set of rules and default behaviors
in order to create only one unique SMILES for each of the compounds.
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3.2 N-gram language model

One of the first problems tackled by natural language processing methods was
a missing last word in sentence [7]. N-gram language model, which builds a
probabilistic language model based on n previous words, turns out to be a per-
fect solution to this problem [1]. Having a sentence of words w1, . . . , wN , the
probability of word wi occurring after the last n words is given by1:

P (wi|wi�n+1 . . . wi�1) =
|wi�n+1 . . . wi|

|wi�n+1 . . . wi�1|
Therefore, the probability of a sequence can be calculated as:

P (w1, . . . , wN ) =

NY

i=1

P (wi|wi�n+1 . . . wi�1)

Because longer sequences will automatically get lower probability, the perplexity
is used to calculate how well a given sentence fits to a created model.

Definition 1. Perplexity of a w = w1, . . . , wN sequence of elements, is defined
as

PPL(w) = P (w1, . . . , wN )�
1
N

This measure is not dependent on a sequence length and is minimized by the
best fitting sequence.

A problem with an n-gram model arises when a sequence contains such n-
grams which were not present in a training set, therefore their probability equals
0. Smoothing techniques were introduced to deal with this and other n-gram
model problems. One of such methods is Jelinek-Mercer interpolation [17], which
idea is to use information of smaller contexts to interpolate the probability of a
longer one. It is given by:

P̂ (wi|wi�n+1 . . . wi�1) =

�wi�1
i�n+1

P̂ (wi|wi�n+1 . . . wi�1) + (1 � �wi�1
i�n+1

)P̂ (wi|wi�n+2 . . . wi�1)

where � 2 [0, 1] parameters can be grouped and then fitted with an expectation-
maximization algorithm.

Applications of n-gram model go beyond sentence modeling with words. One
can use the perplexity to construct a decision function which allows to classify
a given sentence to one of underlying classes. For a simplicity, let us consider
a binary classification problem and assume that separate n-gram models were
constructed for two groups of texts. Then the probability of assigning a new text
x to class ci, for i = 1, 2 equals:

P (ci|x) =
PPLci(x)

PPLc1
(x) + PPLc2

(x)
. (1)

N-gram model provides good results in many areas and its biggest advantages
are simplicity and scalability. With increase of data, the space requirement grows
slower as more n-grams are being repeated.

1 we replace w�i, for i = 0, 1, . . . by an empty symbol < s >
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Table 1: Adding a context to SMILES 3-gram model
compound SMILES SMILES with context added

CC(C)C(=O)O CC(C)eCCC(=O)eCCO

3.3 Combining SMILES with NLP

The first step of constructing n-gram model relies on the tokenization of text
into base symbols (words). This is motivated with balancing information carried
by di↵erent tokens. It resembles a situation from natural language processing in
which word lengths are completely ignored by an n-gram model.

Two approaches are proposed to tokenize SMILES:

– Baseline. The simplest way to apply n-gram model to SMILES is to split
SMILES into single characters and build a model upon such elements.

– Tokenization. Let us observe that it might not be reasonable to split an
atom symbol ’Br’ int o ’B’ and ’r’. Following that idea, elements longer than
one symbol, like ’Br’, are gathered into single tokens. Also, numbers which
are present in square brackets or after ’%’ symbol are matched together to
distinct them from single digits which stand for circular structures.

SMILES provides a text representation of chemical compound structure.
However, to build a reasonable N-gram model from SMILES one has to keep
in mind that this representation encodes a graph structure into a sequence of
symbols. To deal with that problem, the following SMILES modifications are
proposed:

– Simplification. Idea proposed in [16] and [14] is to simplify circular struc-
ture information by replacing all the digits with ’0’ and to simplify aromatic-
ity information by replacing all the letters with their capitals.

– Context. While traversing a branch in graph, ending it and going back to
where it starts makes the n-gram model to still read the elements on the end
on that branch which can actually be placed far away from a current position.
The idea is to duplicate the last (n�1) elements which were read before the
branch started and are connected to the current path. Also proceed them
with (n � 2) symbols ’e’ to fully disconnect the structures which are not
connected in compound graph. Table 1 shows an example of such SMILES
modification.

– Short paths. In order not to multiply the information contained in the
branching (as in the above context addition), the idea is to only add (n� 2)
symbols ’e’ which results in disconnecting some parts of a graph and working
on shorter paths. Similarly to an NLP situation in which individual parts
of a sentence are separated with a coma symbol, in case of SMILES such
separation is always done with going back to the beginning of a branch
represented by symbol ’)’.
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Table 2: An example of new SMILES creation
compound SMILES new reversed SMILES

CC(C)C(=O)O CC(C(O)=O)C

– New SMILES. Because there is more than one way of traversing a graph,
to allow n-gram model to use more of the paths available one can create
new SMILES by changing the order of graph traversing. Both sequences can
be then separated with a special symbol in order to create one representa-
tion. Because the number of all possible SIMILES is extremely high and it
makes our model more complex, there is a need to solve an information-
complexity trade-o↵ by maximizing the information gain when adding new
SMILES. Starting with creation of one additional representation, it was done
by reversing the order in which branches are read so that the first branch is
read as the last one. Table 2 shows an example. As you can see, non of the
paths used before is being repeated in the new SMILES which maximizes
the information gain.

4 Experiments

In this section we present a complete experimental analysis, which verifies meth-
ods described in previous section. First, we describe the preparation of data.
Next, we test how the modifications introduced in Section 3.3 a↵ect the results
obtained by applying a perplexity classifier (1). Finally, we compare di↵erent
classifiers on a vector representation created from the n-gram model.

4.1 Data preparation

Chemical compounds data were downloaded from the ChEMBL database [4].
The target proteins are called receptors and each of those defines di↵erent ac-
tivation value. In order to reliably test our approaches, a set of 6 serotonin
receptors was chosen: 5-HT1a, 5-HT6, 5-HT7, 5-HT2a, 5-HT2b and 5-HT2c.
They all define separated datasets in which the same compounds may or may
not occur. Because activity test on human and rat provides similar results, both
of those sets were downloaded. Activity function is measured by an inhibition
constant Ki [15]. Compounds with an inhibition constant less than or equal to
100 nM were considered active; ligands with Ki higher than 1000 nM were used
as inactive. The range (100, 1000) is removed from data as not clear enough.2

2 From a machine learning point of view, removing those compounds creates an arti-
ficial absence of data. However, to make the problem easier and be consistent with
the methodology used by chemists, the given approach is used.
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Table 3: Number and ratio of di↵erent compounds for receptors
5-HT1a 5-HT6 5-HT7 5-HT2a 5-HT2b 5-HT2c

actives 4376 1597 888 2041 410 1289
inactives 1057 379 365 995 335 1023

ZINC 39384 14373 7992 18369 3640 11601

act. / inact. 4.14 4.21 2.43 2.05 0.32 1.26
act. / ZINC 0.11 0.11 0.11 0.11 0.11 0.11

Unfortunately, bioactivity data can be very noised as varying laboratory condi-
tions can highly change test results. In case of duplicated records, in order to
reduce an influence of outliers, a median value is calculated.

The last problem with ChEMBL database is an unbalanced amount of active
and inactive elements. Because the majority of molecules in the real world are
the inactive ones, their discovery is nothing special and they are not published to
databases. It results in a completely opposite compounds ratio. To deal with that
problem, ZINC compounds are being used [6]. Those are artificially generated
compounds with a high probability of being inactive. Because those compounds
are significantly di↵erent than the ones obtained from ChEMBL, mixing ZINC
with ChEMBL compounds would result in a yet another problem di↵erent than
the real one. The most common strategy is to create two unbalanced datasets, one
containing all the compounds from ChEMBL and another with active molecules
from ChEMBL and inactive ones in the form of ZINC. An advantage of the first
dataset is a high similarity between active and inactive compounds which makes
the problem much harder, while second dataset describes better the real ratio
between compounds. Having those datasets and 6 di↵erent receptors, it gives us
total of 12 problems to solve. The number of compounds and their ratio in all
of the datasets is summarized in the Table 3.

The models are tested with 10-fold cross-validation and the error is measured
with the Matthews correlation coe�cient [9] defined as:

MCC =
TP · TN � FP · FNp

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

where:

TP - number of examples correctly classified as positive

TN - number of examples correctly classified as negative

FP - number of examples incorrectly classified as positive

FN - number of examples incorrectly classified as negative

MCC results vary in range [-1, 1]. The reason for choosing it is the fact that
it is one of the most reliable errors in case of unbalanced problems.
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Table 4: Mean MCC score of 6-gram model in active and ZINC compounds
classification

5-HT1a 5-HT6 5-HT7 5-HT2a 5-HT2b 5-HT2c

baseline 0.944 0.969 0.943 0.930 0.897 0.928
tokenization 0.944 0.969 0.944 0.931 0.894 0.929

context 0.926 0.963 0.929 0.914 0.879 0.903
short paths 0.926 0.958 0.925 0.909 0.877 0.900

simplification 0.926 0.959 0.930 0.916 0.885 0.915
new SMILES 0.960 0.974 0.952 0.952 0.912 0.939

Table 5: Mean MCC score of 6-gram model in active and inactive compounds
classification

5-HT1a 5-HT6 5-HT7 5-HT2a 5-HT2b 5-HT2c

baseline 0.611 0.737 0.671 0.657 0.562 0.674
tokenization 0.614 0.733 0.668 0.656 0.564 0.676

context 0.591 0.731 0.633 0.641 0.553 0.655
short paths 0.601 0.759 0.650 0.649 0.542 0.665

simplification 0.593 0.720 0.672 0.637 0.552 0.653
new SMILES 0.621 0.749 0.666 0.657 0.559 0.697

4.2 N-gram language model

In this section we verify the usefulness of SMILES modifications proposed in
Section 3.3. The goal of experiments will be to make the n-gram model extract
from SMILES as much information relevant to bioactivity as possible.

We use a perplexity classifier (1) applied on these models. To refer the par-
ticular types of modifications, we use the names given in Section 3.3. In exper-
iments, the KenLM implementation of n-gram model is used [5]. Both 3 and
6-grams models were tested, however 6-gram model performed much better in
all of the experiments and will be used to present the results.

It is clear from Tables 4 and 5 that the tokenization made the results slightly
better than the baseline. The experiments reveal the interesting thing that ad-
dition of the context does not help the bioactivity prediction. It may be due to a
fact that during a ligand to target protein connection, branches are much more
important than chemical compounds center. In above approach however, it is
centers of a compound that are being multiplied and result in adding noise to
the representation. We also observed a slight deterioration if the classification
results when the short paths or the simplification of SMILES was considered.
On the other hand, the creation of new SMILES worked well in case of active
and ZINC compounds. With active and inactive compounds, the results are not
so clear but in general it is the best approach developed.
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Table 6: Representations for 5-HT1a receptor
nonzeros

dataset size length mean density

active + inactive
3-gram 5433 1975 99,71 0,050
6-gram 5433 43562 308,51 0,007
KRFP 5433 4860 64,08 0,013

active + ZINC
3-gram 43760 2599 103,72 0,040
6-gram 43760 103933 318,19 0,003
KRFP 43760 4860 62,38 0,013

4.3 Bag-of-n-grams

In order to enable natural language processing with standard methods of machine
learning, one has to create a vector representation. The simplest representation
of this kind is called bag-of-words and its idea is to create a vector of length N
where every position shows a number of occurrence of a word from a dictionary.
Dictionary can be extracted from a training set. This representation can be
extended to the case of n-grams (bag-of-n-grams), where every position of a
vector corresponds to occurrence of a given n-gram. This representation will be
used in the present experiment.

Modifications introduced previously should also have a positive e↵ect on
a bag-of-n-grams representation build upon modified and tokenized SMILES.
A popular Klekota-Roth fingerprint (KRFP) will be used to compare the re-
sults [8]. It is based on counting substructures which were designed to increase
the bioactivity information. Table 6 shows statistics of created representations.
KRFP has a constant length of 4860 features while between 3 and 6-gram rep-
resentations one can observe a huge di↵erence due to an exponential grow of
n-grams. However, our representation scales well with the amount of data and
for active and ZINC compounds, which set is about 8 times bigger than active
and inactive compounds, the representation is only about twice longer.

The classification of vector representations was then solved with Support
Vector Machine (SVM) [2] which is a reliable model of the machine learning.
When using SVM, one has to choose a kernel and the most important param-
eter of SVM which is the regularization value C. The kernel chosen is radial
basis function, while regularization was fitted with cross-validation method af-
ter performing features standardization by removing the mean and scaling to
unit variance. The parameter space searched was 10x for x 2 {�3,�2, · · · , 4}
and for all the data sets and representations, the best C value equals 103. Be-
cause the classification problem comes from mapping the activation function
into a set of labels {-1, 1}, one can also treat this problem as a regression. Both
approaches were tested with a use of SVM implementation from scikit-learn li-
brary [10]. Answers ŷi of regression models are mapped into the set of labels
with a function:

f(ŷ) =

⇢
0 if ŷ  0.5
1 if ŷ > 0.5
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Table 7: Mean MCC score of vector classification for active and ZINC com-
pounds.

5-HT1a 5-HT6 5-HT7 5-HT2a 5-HT2b 5-HT2c

6-gram model 0.960 0.974 0.952 0.952 0.912 0.943

6-gram
SVM cls. 0.983 0.987 0.977 0.975 0.944 0.970
SVM rgs. 0.984 0.988 0.977 0.975 0.947 0.970

KRFP
SVM cls. 0.971 0.975 0.956 0.953 0.892 0.943
SVM rgs. 0.969 0.946 0.955 0.913 0.887 0.918

Table 8: Mean MCC score of vector classification for active and inactive com-
pounds.

5-HT1a 5-HT6 5-HT7 5-HT2a 5-HT2b 5-HT2c

6-gram model 0.621 0.749 0.666 0.657 0.559 0.697

6-gram
SVM cls. 0.689 0.780 0.701 0.711 0.589 0.703
SVM rgs. 0.695 0.774 0.686 0.695 0.576 0.697

KRFP
SVM cls. 0.655 0.726 0.733 0.722 0.529 0.677
SVM rgs. 0.618 0.741 0.744 0.727 0.529 0.678

Tables 7 and 8 show results of classification for sets containing inactive and
ZINC compounds respectively. The ’cls.’ and ’rgs.’ annotations stand for classi-
fication and regression approaches. First of all, the bag-of-n-grams classification
gives much better results than n-gram model. SVM regression approach works
better than the classification. In general, it achieves better results with 6-gram
representation than with KRFP fingerprint (two exceptions are 5-HT7 and 5-
HT2a receptors in the case of actives-inactives separation).

To have more detailed analysis of the classification, the results for receptors
5-HT1a and 5-HT6 (actives and inactives) are shown in Figure 2. For all of the
classification models, 6-gram representation works better than KRFP and allows
the SVM regression to achieve a high mean MCC scores equal to 0.7 and 0.78.

5 Conclusion

In this paper, the application of NLP methods to bioactivity prediction was pre-
sented. The best modifications were chosen during experimental analysis which
shows that virtual screening with a use of textual representation was successful.

In case of the n-gram model, a general tokenization approach and new SMILES
generation algorithm were designed. This lead to a creation of bag-of-n-grams
representation which is a big success of this work. It allows SVM to achieve
higher scores than when using KRFP . Considering the fact that in comparison
to KRFP in order to create a bag-of-n-grams representation no chemical domain
knowledge is required, it proves high capabilities of this representation.

Open door are also left for further study on SMILES. One of the biggest
improvements was new SMILES generation. It would be definitely worth to find
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Fig. 2: Classification results of active and inactive compounds for 5-HT1a and
5-HT6, respectively

an optimum between results improvement and time complexity due to a new
SMILES generation. In case of bag-of-n-grams representation, it is a common
approach in NLP to reduce its dimensionality by removing from a dictionary
words which occur in too many or too few documents, as they may be not rel-
evant to a problem. Similar techniques based on n-grams frequency could be
applied here which would result in reducing the dimensionality of the represen-
tation. Lastly, satisfactory results of bag-of-n-grams representation and n-gram
model which works directly on SMILES representation lead to a conclusion that
learning compounds representation directly from SMILES with deep learning
methods could be a promising approach to undertake.
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Abstract. In this work we compare different information fusion ap-
proaches in the context of large-scale multi-label classification problems,
typical today in bio-domains: early fusion, late fusion and hybrid fusion
approach. The experiments are performed on two novel large-scale classi-
fication datasets for gene function prediction and prokaryotic phenotype
prediction. Both datasets are based on descriptors coming from a number
of different representations of biological entities. The results reveal that
the fusion approaches exploiting complementarity are best suited for dif-
ficult annoation problems featured in complex datasets from bio-domains
for which individual classifiers perform well only locally.

Keywords: information fusion, ensemble classifier design, diversity, an-
notation, genomics

1 Introduction

Combining classifiers for information fusion [1], [2], [3] is an important topic
in the era of information overload present in the majority of technological and
scientific domains, from multimedia systems to life-sciences. In particular, in
molecular and systems biology multitude of omics approaches are used in order
to explain complex roles and associations between cell constituents, and machine
learning methods are used as tools for knowledge discovery, either for annotating
entities with typically non-exclusive roles (e.g. protein function prediction), or in
searching for the important patterns, interactions and representations of entities
for the particular problem at hand. The importance of machine learning is best
seen through a number of predictive challenges, some of which are repetitive
regular events such as CASP and CAFA. Here are some features accompanying
discovery problems in genomics:

1. Predictive performance is typically optimized to maximize predictions at
certain precision threshold, and the final model can refrain from making a

? The first two authors should be regarded as joint first authors.



decision when certain precision is not guaranteed. This predictive setting is
actually close to that of information retrieval in which metrics uch as F-
measure, Area Under Precision Recall Curve (AUPRC) or recall@precision
are used.

2. Predictive problems often involve multi-label classification or structured out-
put prediction, where the output structure can be in the form of taxonomy
or ontology showing the need for tools that exploit relations between labels.

3. Complex problems in this domain often include a number of different repre-
sentations drawn from at least partially independent views. Overall dimen-
sionality of these representations, in terms of the number of features, their
relevance for the target and their mutual independence are the major chal-
lenges with respect to the annotation problems. Therefore, it is important
to have efficient and reliable methods that can exploit individual contexts
and their interactions.

The last feature can be handled using classifier fusion approaches that exploit
complementarity on a feature or classifier level. In this work we evaluate differ-
ent fusion approaches in the context of two large scale predictive problems: gene
function prediction (GFP) and prokaryotic phenotype prediction (PP), address-
ing all of the specific requirements mentioned above. Evaluation methodology
provide us a detailed picture of driving mechanisms behind the predictive perfor-
mance of different approaches. The main contribution of this work are insights
related to the importance of fusion mechanisms and their capability to exploit
advantages of different representations used to describe entities of underlying
problems.

2 Related Work

Multi-classifier systems, classifier ensembles and meta-learning approaches have
been important topics in the machine learning field for several decades. Informa-
tion fusion is closely related to these topics. The evolution and adaptation of the
well known techniques and approaches in this field is of high importance in the
context of complex, distributed and streaming data environments. Concepts of
fusion and multi-classifier combination techniques are covered extensively in the
reviews [1], [3], [4], and have been important topics at the relevant conferences
in the field of data mining and machine learning.

Different aspects are important when optimizing combination of modalities,
but one most considered is the level at which fusion of representations is per-
formed: in early fusion predictive model is built using all feature sets or repre-
sentations together to make a single decision model; contrary to that, late fusion
approaches deal with combining models learnt separately on different features
sets or representations. Each of these approaches has their own advantages. Early
fusion approach can make use of interactions between basic features from differ-
ent representations, improving both understanding and predictive performance,
while late fusion approaches can combine outputs of different classifiers exploit-
ing the same representation on a decision level. Moreover, combining individual
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decisions from possibly complex individual representations offers scalability and
allows us to use the most suitable methods for analyzing each single representa-
tion, thus providing more flexibility than the early fusion.

An obvious extension that combines the strengths of both approaches is the
hybrid fusion, which in the simplest variant, combines early fusion model with
the individual representation models using late fusion approaches.

In the majority of analysis reported in literature empirical results demon-
strate better performance of late fusion methods in comparison to early fusion.
Late fusion methods exploit additional level of complexity through another layer
of decision making, i.e. combination of multiple baseline (feature subset) mod-
els. Although the power of ensembles approaches has been both theoretically
and empirically proven to be related to at least partial independence of mod-
els, the strong and definite connection between different ensemble diversity and
accuracy of the ensemble seems to be lacking [5].

Recently, in paper by [6] the authors illustrate the connection between im-
provement of ensemble classifiers based on the relative independence of their
false-positive prediction patterns. In their study they used recall at predefined
precision level as a measure to compare classifiers’ performances. This mea-
sure is very well suited for information retrieval, but it is also aligned with the
knowledge discovery tasks. We show in this work that the power of late fusion
approaches is most effective in the setting where strong predictive performance
of individual classifiers (or descriptor sets) is of very local character. Further-
more, we show that in this setting that there is a strong correlation between
recall at predefined precision threshold and the diversity of classifiers calculated
using their individual performances.

3 Fusion approaches

In the early fusion setting feature sets from the individual representations are
all joined into one dataset from which a single classifier is constructed. This
type of fusion should generally better exploit interactions between features from
different representations.

On the other hand, late fusion is performed by constructing a separate clas-
sifier for each of the individual representations and then fusing their predictions.
Our pipeline implements five different late fusion approaches: one vote, two votes,
three votes, consensus [7] and weighted voting [8].

Let C = (ci)
N
i=1 be a sequence of confidence scores of N individual classifiers

and let S = (si)
N
i=1 = sort(C) denote a sequence arranged in ascending order i.e.

si  si+1. The one/two/three votes approaches calculate the fused confidence
scored of the class yj :

c1vote(yj) = sN (yj); c2votes(yj) = sN�1(yj); c3votes(yj) = sN�2(yj) (1)

Consensus score of a label yj is calculated using the following formula:

ccons(yj) = 1 �
NY

i=1

(1 � ci(yj)) (2)
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The weighted voting score of a label yj is calculated as follows:

cwv(yj) =
NX

i=1

wici(yj), (3)

where wi denotes weight assigned to the classifer i and:

NX

i=1

wi = 1 (4)

We calculated weight as Area Under Precision-Recall Curve (AUPRC) estimated
in the cross-validation setting and normalized to sum to 1.

Finally, hybrid fusion performs late fusion on the predictions from the indi-
vidual classifiers and the early fusion classifier.

4 Experimental Setup

In this section we start by introducing problems and respective representations
used in this work. Further, we explain the general scheme of experiments designed
to give us an answer to our main question: which fusion approaches work best
for the types of problems we solve in this work, while also providing intuition
when and why. Next, we present the experimental methodology and discuss the
evaluation measures used in the experiments.

4.1 Datasets

Gene function prediction. Five datasets represent GFP methods based on
semantically distinct feature sets (Table 1, details in [9]). All datasets have com-
mon set of 15,308 instances representing eggNOG clusters of genes [10] and are
labeled with 935 gene functions from Gene Ontology (GO) [11].

Phenotype prediction. Phenotype prediction datasets are constructed using
six different representations (Table 2, details in [12]). Each representation rep-
resents one dataset with a set of 703 instances and 72 labels. Each instance
corresponds to one prokaryotic organism labelled with a set of phenotypic traits.

4.2 Methodology

The input to our computational pipeline is the group of datasets that describe
the same concept but with distinct feature sets. First, in order to reduce the
dimensionality of the feature sets we applied principal component analysis (PCA)
on each of the datasets separately and retained principal components (PC) that
explain 90% of the variance. We divided our data into training (consisting of
2/3 learning instances) and test sets (1/3 instances) using stratified sampling.
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Table 1. Gene function prediction datasets.

Dataset # features # PC Features description

Phyletic profiles (PP) 2071 352 Features are genomes and feature values represent pres-
ence/absence of cluster member genes in genomes.

Empirical kernel map
(EKM)

8447 1552 Features are gene clusters and feature values represent
minimal distance between gene sequence pairs, where one
sequence is from instance and another from feature clus-
ter. Distance is measured as e-value.

Conserved gene neigh-
borhood (CGN)

5891 1411 Features are gene clusters and feature values represent
average log-distance (in nucleotides) between genes from
instance and feature cluster pairs averaged over genomes.

Translation efficiency
profiles (TEP)

2071 1449 Features are genomes and values represent maximal pre-
dicted level of cluster member genes expression.

Biophysical and protein
sequence properties
(BPS)

1170 296 Features represent various gene sequence statistics as de-
scribed in [13]. Statistics are computed on a gene level
and averaged between cluster member genes.

Table 2. Phenotype prediction datasets.

Dataset # features # PC Features description

Text-mining 95663 438 Bag-of-words representations of documents describing
bacterial/archael species collected from the scientific lit-
erature and the broader World Wide Web

Amino acid content 420 3 Amino acid and di-amino acid frequencies of a proteome
Pairwise co-occurrences 1235 33 Pairwise co-occurrences of species in metagenomes [14]
Phyletic profiles 80576 393 Presence/absence of the clusters of orthologous groups

(COGs) of proteins
Conserved gene neigh-
borhood

44850 366 Log pairwise chromosomal distance in nucleotides be-
tween pairs of 300 frequently occurring COG gene fam-
ilies

Translation efficiency
profiles

990 263 Codon usage biases of COG gene families across 606
genomes, measured using the MILC method [15]

In the early fusion setting, all feature sets were combined and given as an input
to a single early fusion model (EF). In the late fusion setting, individual models
are constructed for each of the feature sets (FS) separately. In order to access
performance of indvidual classifiers necessary for the weighted voting approach,
we used a cross-validation setting. The hybrid fusion model was built in the
same way as the late fusion one, but also using the early fusion model as a
classifier. Finally, all models are deployed on the test set instances. Figure 4.2
gives a general outline of computational experiments performed on each of the
problems discussed in this work.

Governed by the principle of the best trade-off of accuracy, efficiency and
robustness, we used random forests [16] as a classification algorithm. Random
forests have been used on biological data and the evaluation shows that they are
able to produce state-of-the-art annotation results [9] [23] [24]. Since label spaces
of gene function prediction (GFP) and phenotype prediction (PP) problems
have different properties, we used different versions of the algorithm. In order
to exploit hierarchical structure of the labels in the GFP problem, we used
random forests version of CLUS-HMC [17], [18]. CLUS-HMC is the algorithm
for hierarchical multilabel classification based on the framework of Predictive
Clustering Trees [19]. CLUS-HMC was run with the default parameters, except
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for these settings: decision tree pre-pruning was used to prevent the algorithm
to form a leaf node when the number of instances in the node is <5; forest size
was set to 200 trees; size of a feature subset for random forests was set to square
root of the total number of features. For the PP problem where the multi-label
target side is flat, we used FastRF, a fast and efficient implementation of the
random forest algorithm in WEKA [20]. The number of trees was set to 500. For
this setting we applied binary relevance method that corresponds to learning
one classifier for each label separately. This leads to a notable difference from
CLUS-HMC which is able to produce one global model over the whole hierarchy
of labels. Finally, it is important to note that diversity of individual models in
the fusion ensemble is the consequence of the use of different feature sets given
in Tables 1 and 2 in building individual classifiers of the fusion ensemble.

Fig. 1. General schema of computational experiments performed in this work.

4.3 Evaluation

Predictive performance of different fusion approaches was measured on a sepa-
rate test set, composed of one third of the instances. We used two performance
measures that rely on a precision-recall curve: (i) Area Under Precision Recall
Curve (AUPRC), and (ii) recall at some predefined precision level (R@P) which
represents the part of the precision-recall curve at some (high) precision level.
The latter measure was used to emphasize the importance of having predic-
tions with high level of precision which is especially important in the context of
annotation for omics data.

A single PR curve was computed by averaging label-specific curves, which
corresponds to the averaging procedure known as macro-averaging in a multi-
label machine learning setting. It is common to report micro beside macro-
averaged measures, but micro-averaging is not appropriate in the setup with
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highly unbalanced classes where interesting classes are typically those with the
least positive examples. For example, a specific label predicted from the bottom
of the GO ontology is more interesting for a domain expert than the label pre-
dicted higher in the ontology. In such settings, micro-averaging would equally
weight examples and thus, averaged performance scores would mainly represent
the performance on less interesting general labels. In contrast, macro-averaging
equally weights labels, enabling interesting specific classes to influence the aver-
age performance score.

Statistical comparison of fusion approaches was performed by using the cor-
rected Friedman test and the post-hoc Nemenyi test [25]. The Friedman test is
a non-parametric test for multiple hypothesis testing. For each label, this test
ranks the fusion approaches according to AUPRCs measured for this specific
label. The best approach is ranked as the first and in the case of ties an average
rank is assigned. The test compares approaches by comparing ranks averaged
over all labels and calculates Friedman statistic distributed according to the �2

F

with k�1 degrees of freedom, k being the number of fusion approaches. In cases
where at least one approach performed significantly different than the rest we
performed Nemenyi test that shows where that difference lies. We present the
results of Nemenyi test using average ranks diagrams [25].

Diversity in classifier ensembles is measured as a disagreement between clas-
sifiers in terms of correct/incorrect predictions. Different pairwise diversity mea-
sures have been proposed in literature [5], while the averaged statistic is typically
calculated by averaging over all pairs of classifiers. As the most appropriate mea-
sure to characterize diversity in our setting, we chose the disagreement measure
[21] defined as the ratio between the number of predictions on which classifiers
disagree and the total number of predictions:

Disagreement(i, j) =
N10 + N01

N11 + N10 + N01 + N00
, (5)

where N10 denotes the number of predictions on which classifer i is correct
and classifier j is incorrect; the same applies vice versa. Since we deal with
highly unbalanced classes, the diversity measure was calculated only on positive
examples.

In order to investigate the complementarity in the context of fusion perfor-
mance in more detail, we assessed the performance of fusion approaches in the
respect to the generality of labels. The generality was measured using informa-
tion content (IC) [22] computed from label frequency. Higher IC is related to
the more specific labels which are usually more difficult to predict, but more
valuable to the domain experts.

4.4 Experiments

In order to investigate which of the fusion approaches performs best and how is
the performance related to the diversity of individual classifiers, we structured
our experiments in the following manner: (i) we computed macro-averaged per-
formance measures for each of the individual classifiers and fusion approaches
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across three levels of difficulty; (ii) we looked at the relationship between diffi-
culty and diversity of individual classifiers for EF, LF and HF approaches; and
(iii) to examine complementarity of EF, LF and HF we measured improvement
over a baseline. Since in our experiments LF-three votes approach is a proxy of
majority voting and a solution that fosters consensus of classifiers rather than
complementarity, we used it as a baseline.

5 Results and discussion

Performances of individual classifiers and different fusion approaches for GFP
and PP problem are shown in Table 3 and Table 4, respectively. Performances are
measured using average AUPRC and recall at 70% precision threshold. Results
are structured to show performance for different label generality levels defined by
problem the specific IC intervals (general, medium and specific; equal number of
labels per bin). One obvious difference between the GFP and PP problems is that
the average performance of individual classifiers for the GFP problem is much
lower than for the PP problem. This is not unexpected since the GFP annotation
is more difficult problem with more than an order of magnitude larger label
space. Average results in Tables 3 and Table 4 are accompanied with statistical
comparison of fusion approaches through average ranks diagrams across label
generality levels shown in Figure 2.

More detailed analysis reveals different trends between fusion approaches
across label generality levels. For the GFP problem, weighted voting approach
and consensus scheme are clear winners over all generality levels, while late
fusion and hybrid fusion approaches are consistently higher than the early fu-
sion approach. The situation is different for the PP problem: early fusion gives
slightly better results than late fusion and hybrid fusion approaches. For the
general and medium-specific labels of the PP problem, three votes fusion seems
to be a better choice than the weighted voting or consensus scheme, albeit not
significantly. Also, differences in ranking between one and three vote schemes
for the two problems suggest that the improvements through fusion is obtained
in a different manner: by exploiting complementarity in GFP, and consensus in
PP problem. In relative terms, improvements obtained by fusion approaches are
much more significant for the GFP problem, as are also the differences between
fusion schemes, as depicted in Figure 2.

5.1 Classifier diversity and performance of fusion approaches

The relationship between diversity and performance of different fusion approaches
is shown on Figure 3. For both problems, higher diversity seems to be clearly
related with higher performance, similarly for AUPRC and R@P measure. It
seems that diversity spreads to larger values for GFP than for PP problem.
Before making further inferences about the nature of the relationship between
performance of classifiers and diversity we need to look into basic characteristics
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Table 3. Gene function prediction

GENERAL MEDIUM-SPECIF SPECIFIC

AUPRC RC@0.7PR AUPRC RC@0.7PR AUPRC RC@0.7PR
Early fusion 0.543 0.417 0.196 0.192 0.081 0.155

L
at

e
fu

si
on One vote 0.573 0.440 0.238 0.201 0.113 0.149

Two votes 0.453 0.335 0.176 0.170 0.103 0.147
Three votes 0.241 0.127 0.118 0.100 0.044 0.096
Consensus 0.571 0.447 0.252 0.227 0.131 0.169

Weighted voting 0.590 0.455 0.257 0.228 0.122 0.165

H
y
b
ri

d
fu

s. One vote 0.575 0.439 0.245 0.201 0.117 0.151
Two votes 0.561 0.434 0.251 0.216 0.131 0.175

Three votes 0.485 0.373 0.210 0.200 0.107 0.165
Consensus 0.582 0.449 0.275 0.233 0.153 0.187

Weighted voting 0.580 0.453 0.276 0.235 0.134 0.186

In
d
iv

id
u
al PP 0.136 0.048 0.057 0.065 0.007 0.065

EKM 0.529 0.392 0.144 0.163 0.030 0.102
CGN 0.123 0.046 0.045 0.062 0.008 0.075
TEP 0.083 0.026 0.018 0.044 0.004 0.026
BPS 0.411 0.264 0.052 0.089 0.023 0.104

Table 4. Phenotype prediction

GENERAL MEDIUM-SPECIF SPECIFIC

AUPRC RC@0.7PR AUPRC RC@0.7PR AUPRC RC@0.7PR
Early fusion 0.836 0.781 0.610 0.465 0.439 0.309

L
at

e
fu

si
on One vote 0.732 0.622 0.452 0.227 0.373 0.227

Two votes 0.796 0.710 0.562 0.413 0.434 0.312
Three votes 0.820 0.774 0.571 0.430 0.425 0.333
Consensus 0.799 0.726 0.551 0.383 0.406 0.265

Weighted voting 0.820 0.762 0.584 0.436 0.430 0.296

H
y
b
ri

d
fu

s. One vote 0.732 0.623 0.452 0.227 0.373 0.227
Two votes 0.802 0.711 0.581 0.439 0.440 0.312

Three votes 0.831 0.787 0.595 0.449 0.439 0.319
Consensus 0.808 0.736 0.566 0.399 0.416 0.279

Weighted voting 0.827 0.772 0.593 0.445 0.446 0.317

In
d
iv

id
u
al TM 0.791 0.715 0.575 0.428 0.388 0.262

AAC 0.679 0.540 0.339 0.153 0.270 0.126
PC 0.611 0.408 0.253 0.119 0.132 0.058

CGN 0.759 0.692 0.499 0.361 0.429 0.336
PP 0.781 0.696 0.504 0.347 0.414 0.342

TEP 0.752 0.684 0.418 0.240 0.259 0.177
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Gene function prediction 

Phenotype prediction 

(b) Medium-specific 

(c) Specific 

(a) General 
Critical distance = 0.857  

Critical distance = 0.858  

Critical distance = 0.853  

(e) Medium-specific 

(d) General 
Critical distance = 3.11 

Critical distance = 3.11 

Fig. 2. Average ranks diagrams comparing the performance of fusion ap-
proaches over labels belonging to different levels of generality. LF stands for
late fusion and HF for hybrid fusion. The numbers on the axis represent ranks and
the best ranking approaches are at the leftmost side of the diagram. The approaches
that do not differ by less than the critical distance for a significance level of 0.05 are
connected with a line.
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of the used diversity measure. Assuming independence between individual classi-
fier outputs, higher values of diversity can be expected for ensembles of medium
performing classifiers or ensembles with very diverse range of performances. If
we assume that we have homogeneous ensemble of classifiers with high recall
values, we can expect low diversity measures. The same is true if all classifiers
have low recall values since in that case low diversity is driven by high values of
N00 in Eq.(5). Main correlation trend between diversity and performance for the
GFP problem seems to be driven by ensembles of low performing - low diversity
classifiers on one hand and mixtures of ensembles with low and high performing
classifiers (range of diversity 0.3-0.6).

The same mixture of cases seems to be driving the correlation behind perfor-
mance measures and diversity in case of the PP data, with one notable difference,
the cases with low diversity and very high score. These cases together with the
rest of general labels exhibit no correlation between diversity and performance
scores.

5.2 Relationship between diversity and generality of labels

In principle, when dividing the label space, we assumed that more general labels
will be easier to learn and this holds on average for both problems. However, for
GFP problem in particular, diversity seems to play important role for general
labels as well. At the first glance there is a counter-intuitive result for the GFP
problem: the correlation of diversity and performance is somewhat larger for
general categories than for the specific ones. However, there is a considerable
number of specific categories that are practically not learnable (R@P=0) at
all, which reduces correlation over learnable specific categories. Low learnability
seems also to be the explanation for low scores of significant part of general
and medium specific GFP labels, which shows that available GFP feature sets
are still not fit enough for proper learning of significant part of Gene Ontology
graph.

To the contrast, for the PP problem there seems to be no significant correla-
tion between diversity and performance for general category of labels. However,
if we compare IC intervals of GFP and PP general category of labels, it can be
seen that PP general labels are much more frequent, and therefore also more
easily learnable. Overall fitness of feature sets for general PP labels is confirmed
through low diversity and very high performance scores for general PP labels.
Figure 4 shows increase of the performance scores of fusion approaches over the
baseline three votes approach, regarded in our experiment as a proxy for major-
ity voting. Majority voting is the approach that exploits consensus rather than
the complementarity of classifiers. On the other hand, weighted voting approach
exploits both complementarity and consensus of classifiers. Notable difference
between two problems is that improvement for GFP problem is on average signif-
icant over all label generality levels, while for the PP problem difference between
fusion approaches is practically negligible. Also, for the medium and specific la-
bels of the GFP problem, there is a consistent difference between early, late
and hybrid fusion with early fusion as the weakest and hybrid fusion as the
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Fig. 3. Diversity of individual classifiers is correlated with the predictive per-
formance of fusion approaches. Late and hybrid fusion are both based on weighted
voting approach. r stands for Pearson correlation coefficient, G for general labels, M
for medium specific and S for specific labels. IC stands for information content.
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Fig. 4. Differences between fusion approaches and three votes baseline. Late and hybrid
fusion results are those for Weighted voting approach.

strongest performer. The logical conclusion is that fusion approaches exploiting
complementarity are the best choice for difficult annotation problems, for which
individual classifiers perform well only locally. Such cases are characterized by
strong correlation between diversity and performance of fused ensembles.

6 Conclusions

This work revisits the problem of classifier fusion with intention to provide new
insight into relationship of classifier diversity and performance of classifier fusion
approaches. We have used simple fusion approaches that foster complementar-
ity between classifiers, and two performance measures well suited for discovery
setting of biological annotation. Although we have performed the analysis on
just two datasets, we believe that their complexity and characteristics provide
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enough grounds to conclude that diversity of ensembles is indeed strongly related
to improved performance of fusion approaches exploiting complementarity. This
is the case when individual classifiers exhibit strong performances only locally
(i.e. only for a subset of labels). This conclusion slightly departs from the previ-
ous findings [5]. In our future efforts we plan to investigate relationship between
diversity and performance of fused ensembles in more detail, over more datasets,
using larger number of classifiers, and more complex fusion approaches.
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Abstract. Mining data streams is one of the most vital fields in the cur-
rent era of big data. Continuously arriving data may pose various prob-
lems, connected to their volume, variety or velocity. This topic has been
rarely discussed in the context of medical data mining. In this paper we
address the problem of online fetal state monitoring, where new biomed-
ical signals arrive over time from a hospital ward and medical devices. To
cope with the changing nature of the data and patient-specific charac-
teristics. we propose to use online version of Extreme Learning Machine
that is enhanced by an efficient drift detector and method to alleviate the
bias towards the majority class. We investigate three approaches based
on undersampling, oversampling and cost-sensitive adaptation. Addition-
ally, to allow for a rapid updating of the proposed classifier we show how
to implement online Extreme Learning Machines with the usage of GPU.
The proposed approach allows for a highly efficient mining of high-speed,
drifting and imbalanced real-time fetal state monitoring with significant
acceleration offered by GPU processing.

Keywords: machine learning, data stream mining, medical data streams, im-
balanced classification, online learning, fetal state monitoring

1 Introduction

Contemporary computer systems store and process enormous amounts of data.
Current predictions point out that the volume of stored information will be
doubling every two years. E-mails, social webs, on-line shopping etc. produce
ever-growing data, which may carry valuable hidden information. Therefore,
three main issues in big data analytics must be addressed (known as 3Vs: Vol-
ume, Velocity, Variety): how to efficiently transfer such volumes [7], how to store
them and how to extract meaningful knowledge from them [9, 11]. In this work
we are mainly focusing on the Velocity, because designing big data analytical



tools must take into consideration that most of data in modern systems arrives
continuously [3] as so-called data stream [4]. Furthermore, the nature and char-
acteristics of data, i.e., statistical dependencies characterizing an analyzed data
stream, can change. A special analytical model which can cope with and adapt
to such non-stationary characteristics is required in such cases [6]. This problem
can be connected with the skewed class distributions, leading to scenario when
not only properties of object changes but also ratios between class distributions.

Among a plethora of solutions dedicated to data stream mining with concept
drift we may distinguish the following approaches: (i) based on external module
for detecting shift and drifts in the stream [2], (ii) based on adaptive classifiers
using windowing technique [10], (iii) based on online classifiers that are able to
process stream sample-by-sample, and (iv) using classifier ensembles.

In this work we propose a real-time decision support system for medical data
stream analysis coming from online fetal state monitoring. This is a vital problem
in contemporary clinical care, where we monitor the biosignals emitted by fetus
and try to assess if there is any incorrectness in them. Such an information is
used for guided pregnancy in cases of any difficulties or problems with the fetus.
However, the abnormal cases appear much less frequently than normal ones, thus
leading to the problem of mining imbalanced data stream.

As our data will arrive continuously in a form of medical data stream and
are subject to shifts and drifts over time, we require an adaptive classification
model. We propose to use a modification online Extreme Learning Machines
that is able to handle imbalanced and drifting data streams. Extreme Learning
Machines are selected due to their low computational complexity which makes
them suitable for mining high-speed data. However, to achieve even more rapid
training and update of our classifier we propose a GPU-based implementation
of the online classifier that is able to significantly speed-up the entire process.
This makes our classifier suitable for big data stream mining. In order to capture
the changes in arriving data we employ an efficient ADWIN drift detector that
decides whether to update the current model or discard it and train new one
from scraps. To alleviate the problem of skewed distributions we propose three
approaches utilizing either data-level or cost-sensitive techniques.

2 Fetal state monitoring

Fetal heart activity is the prominent source of information about fetal well being
during delivery. Cardiotocography is a technique of recording the fetal heart rate
and uterine contractions, which enables obstetricians to detect fetus with dete-
riorating status. In case of high-risk patients the fetus is monitored continuously
thorough the mothers’ stay in the hospital ward. Usually a number of patients
is being monitored at the same time, thus leading to need for analyzing infor-
mation arriving from multiple sources ar the same time. There is a variation in
the outputted biosignlas by fetuses that do not point to dangerous state but is
caused by natural differences contributed to individual characteristics of living
beings. .
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Any change in monitored signals must be detected in real-time and handled
as soon as possible. Such abnormalities may be a direct threat to the health
and life of fetus, as well as to mother’s well-being. Therefore, a real-time data
mining with high-speed response is crucial for such a system. This is why we
propose to develop a fully automatic online decision support system that will be
implemented on GPU for fast and precise diagnosis in real-time.

In this paper we use CTU-UHB open database of fetal state signals [8]. It
contains 552 recorded biomedical fetus signals taken from real hospital cases.
The inlying difficulty is the skewness of data . We need to handle a two-class
imbalanced problem, consisting of 506 normal readings and 46 abnormal ones.
For the classification purposes we use 33 features extracted from the signals,
provided by the authors of the database [8]. Up to our best knowledge this is
the first study to consider this dataset as a data stream mining problem.

Hypoxia, with prevalence lying in the region of 0.6% to 3.5%, is considered
to be the third most common cause of newborn death.

Due to high number of factors to be taken under consideration decision sup-
port systems using machine learning are in high demand.

3 GPU-accelerated extreme learning machines for
imbalanced drifting streams

In this section details of the proposed GPU-based Extreme Learning classifiers
for imbalanced and drifting data streams will be given.

3.1 Extreme learning machines

Extreme Learning Machines (ELMs) [5] are random-based single-layer feedfor-
ward neural networks trained in a randomized manner in order to reduce their
computational complexity. In last two decades there was a number of significant
developments in the field of neural network training algorithms. However, most
of these approaches suffered from the extended computational time required for
effective execution and a large number of parameters to be set. ELMs are among
emerging trends in neural network learning that aim at alleviating the training
complexities with the usage of randomly drawn weights for neurons in the hidden
layer. One must note here that despite the emerging popularity of ELMs-based
approaches this concept can be actually traced further down in the literature to
the proposals of Random Vector Functional Link.

Let us now present the concept of ELMs. Let us assume to have n labeled
objects in a d-dimensional feature space and a set of M class labels. A single-
layer feedforward neural network with N hidden neurons can be described by
the following equation:

y =
N∑

i=1

Bif(wi · x + bi), (1)
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where f() represents the activation function, x is the considered object, wi

stand for input weights associated with i-th hidden neuron, bi is the bias of i-th
hidden neuron and Bi are weights assigned to output neurons.

When considering all of n training points we use this equation in a matrix
form:

Y = HB, (2)

where H is the matrix storing outputs of hidden layer for each input object:

H =




f(w1 · x1 + b1) f(w2 · x1 + b2) · · · f(wN · x1 + bN )
f(w1 · x2 + b1) f(w2 · x2 + b2) · · · f(wN · x2 + bN )

...
...

. . .
...

f(w1 · xn + b1) f(w2 · xn + b2) · · · f(wN · xn + bN )


 , (3)

and B = (B1,B2, · · ·BN )T and Y = (y1,y2, · · ·yn). To calculate weights as-
signed to outputs B we need to compute the Moore-Penrose generalized inverse
of the matrix H that will be denoted as H−1.

One must note that due to the random nature of ELMs we may face a high
variance in their behavior. To counter this drawback one may use regularization,
which has been reported as having crucial effect on the quality of ELMs.

In order to regularize ELMs we use an orthogonal projection to get the
Moore-Penrose pseudoinverse of H:

H−1∗ = (HTH)−1HT (4)

where HT is a transposed matrix H. This allows us to add a ridge parameter
1
λ to the diagonal of (HTH), which is known as the ridge-regression regulariza-
tion approach. Applying it leads to obtaining a more stable solution.

After regularization one can calculate the matrix of output weights in step 3
of ELMs training according to:

B =

(
I

λ
+ HTH

)−1

HTY, (5)

where I is an identity matrix of equal size to H.
The ELM algorithm is summarized in a pseudo-code form in Algorithm 1.

Algorithm 1 Extreme Learning Machine with regularization

1: Randomly generate the bias matrix b = (b1,b2, · · ·bN )T

2: Randomly generate the weight matrix W = (w1,w2, · · ·wN )T

3: Calculate H using Eq. 3
4: Calculate Moore-Penrose pseudoinverse of H using Eq. 4
5: Calculate the matrix of output weights B using Eq. 5
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3.2 Online extreme learning machines

Due to their low computational complexity, good generalization abilities and
short response time ELMs have captured the attention of data stream commu-
nity, proving themselves to be suitable for managing streaming and evolving
objects. We will present the background of online ELMs (oELMs) that are able
to efficiently update their structure in either batch or sample-by-sample man-
ner [5].

This algorithm is based on Recursive Least Squares approach for sequentially
updating H. The oELMs proceeds in two steps. Firstly an initial ELM model is
being trained. This requires a labeled training set representative to the analyzed
stream. The size of this sample depends on the application of availability of
labeled examples. however, it was proven that ELMs can initialize themselves
even with small-sample training sets. This step uses standard ELM training
procedure. In the second step ELM enters the online phase that will allow it
to update its structure using incoming examples or data chunks. In accordance
with incremental learning principles each example will be processed only once
and after being processed by oELM it can be discarded. This reduces both
computational complexity and storage requirements, two important factors in
stream mining.

The oELM algorithm is summarized in a pseudo-code form in Algorithm 2.

Algorithm 2 Online Extreme Learning Machine

1: T R0 ← starting labeled training set
2:
3: procedure Initialize(T R0)
4: Randomly generate the bias matrix b = (b1,b2, · · ·bN )T

5: Randomly generate the weight matrix W = (w1,w2, · · ·wN )T

6: Calculate starting H0 using Eq. 3
7: M0 = (HT

0 H0)−1

8: Calculate the starting matrix of output weights B0 = M0H
−1
0 Y0

9: k ← 0
10: end procedure
11:
12: procedure Update
13: while stream = TRUE do
14: k ← k + 1
15: Get new object xk

16: hk = [f(w1 · xk + b1), · · · , f(wN · xk + bN )]T

17: Mk = Mk−1
Mk−1hkh

T
k Mk−1

1+hT
k
Mk−1hk

18: Bk = Bk−1 + Mkhk

(
yT
k − hT

k Bk−1

)

19: end while
20: end procedure
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3.3 Schemes for handling imbalanced and drifting streams

In this paper we discuss two difficulties embedded in the nature of data stream
mining: non-stationary nature of data and skewed class distributions. Each of
these factors individually poses a significant challenge to the pattern classifica-
tion systems. But when combined they may lead to a highly challenging task.
Discussed oELMs are suitable for processing high-speed data streams, but dis-
play no robustness to either class imbalance or concept drift. Therefore, to obtain
an efficient classification system we must augment them with procedures that
will allow to compensate for changing and skewed environment. Let us discuss
in details the proposed components of our framework:
Concept drift. In order to detect changes in the stream we either require a
self-adaptive learner or an external module known as drift detector. In this work
we will use the efficient Adaptive Data Stream Sliding Window (ADWIN) drift
detector [2]. It maintains a variable-length window of arriving examples, where
the window size is directly related to the hypothesis that were no changes in the
average values stored within the window. The only parameter used by ADWIN
is a confidence bound, which points to how confident the user needs to be in
the output of the algorithm. This is a standard parameter used in all methods
dedicated to random processes. Additional advantage of ADWIN is its reduced
computational complexity. It does not store the entire window of objects, but
instead compresses it using the exponential histogram technique. For a window
of length L ADWIN requires has only O(logW ) time and memory complexities
per analyzed object.
Imbalanced data. In order to handle the skewed distribution between classes
we propose to investigate three approaches based on data modification and clas-
sification error:

– Undersampling (oELMunder). In this strategy each obtained chunk of data
is balanced by a random undersampling of the majority class. This solution
has a low computational cost and reduced memory cost by shrinking the
size of processed chunk. However, due to its random nature we can discard
useful objects from the majority class.

– Oversampling (oELMover). In this strategy each obtained chunk of data is
balanced by a random oversampling of the minority class. This approach
preserves all objects from both classes, artificially boosting the quantity of
underrepresented group. This way we do not have a risk of removing valuable
samples. However, this also leads to an increased memory consumption and
processing costs as we increase the size of the processed chunk.

– Cost-sensitive (oELMcost). In this approach we use the moving threshold
paradigm of neural networks. In binary imbalanced problem the continuous
outputs of two neurons in the final layer of oELM for the object x can be
denoted as ymaj(x) and ymin(x), where ymaj(x) + ymin(x) = 1 and both
outputs are bounded within [0,1]. We may apply the cost-sensitive modi-
fication of minority class output to counter the bias towards the majority
class. New output y∗min(x) is computed as y∗min(x) = ηyminCost[min,maj],
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where Cost[min,maj] is the cost penalty and η is a normalization parameter
such that the new output is still bounded within [0,1]. This way we boost the
recognition of the minority class without any data modifications or imposing
additional computational costs. Output is adjusted during the classification
phase. In order to calculate the Cost[min,maj] and adapt it to changes in
data we propose for it be equal to the imbalance ratio (IR) from the previous
chunk.

Please note that we do not used more sophisticated preprocessing techniques
due to their increased computational complexities. We aim at real-time classi-
fication of incoming chunks and therefore at reducing as much as possible the
processing time required for it.

The proposed method is summarized in a pseudo-code form in Algorithm 3.

Algorithm 3 Online Extreme Learning Machine for imbalanced and drifting
data streams
1: DS0 ← starting labeled training set
2: i← 0
3: Train initial oELM according to Algorithm 2.INITIALIZE and selected imbalance

handling method
4:
5: while stream = TRUE do
6: i← i + 1
7: Get new data chunk DSi

8: if cost-sensitive = TRUE then
9: Classify DSi using oELM with y∗

min and ymaj

10: else
11: Classify DSi using oELM with ymin and ymaj

12: end if
13: Obtain true labels for DSi

14: if undersampling = TRUE ∨ oversampling = TRUE then
15: DSi ← undersampling(DSi) ∨ oversampling(DSi)
16: end if
17: if ADWIN detects significant error change in oELM then
18: Rebuild classifier according to Algorithm 2.INITIALIZE using only DSi

19: else
20: Update oELM with DSi according to Algorithm 2.UPDATE
21: end if
22: if cost-sensitive = TRUE then
23: Update Cost[min,maj] with the new IR
24: end if
25: end while
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3.4 GPU-based oELM acceleration

Fast data processing is crucial when dealing with real-time data streams. There-
fore, oELMs are an attractive proposition due to their significantly reduced
computational complexity in comparison to standard neural networks or many
reference classifiers. However, in order to process massive and changing stream-
ing data we require rapid machine learning methods taking advantage of mod-
ern computing environments. Therefore, we decided to focus our attention on
GPU-based implementation of extreme learning classifiers. There exists an effi-
cient R package allowing for transferring the training procedure onto GPU using
NVIDIA CUDA Basic Linear Algebra Subroutines (cuBLAS) library [1]. This
allows for significant speed up of the most computationally costly operations
such as calculating the matrix storing outputs of hidden layer H and its Moore-
Penrose pseudoinverse (steps 3 and 4 of Algorithm 1). This however was not
studied in case of real-time classification and continuously updated classifiers.

We propose to run the oELM using GPU processing applied to updating Mk

and Bk (steps 17 and 18 of Algorithm 2) using cuBLAS library. This allows us to
achieve a significant speed-up when processing continuously arriving chunks of
data. Additionally, in case of ADWIN detecting a concept drift the new classifier
being trained also uses GPU for calculating H0, M0 and B0 (steps 6, 7 and 8 of
Algorithm 2), thus allowing a rapid adaptation to shifts and drifts in evolving
data streams.

4 Experimental study

The aim of this experimental study is to verify the quality of the proposed modi-
fications of oELMs for handling drifting and imbalanced fetal state data stream.
Additionally, we wanted to establish the influence of GPU-based processing on
the computational time required for the proposed models to adapt to changes
in biomedical streaming data.

The used oELM has optimized number of hidden neurons ∈ [10;100] using
the initial training set and sigmoid activation function is being applied.

Classifiers are trained on given chunk and tested on incoming one. Then we
fuse incoming chunk with the existing one and repeat the procedure for new
data. The data block size used for creating data chunks was d = 5 to simulate
constant monitoring of 5 high-risk patients.

For evaluating classifiers in imbalanced non-stationary scenario we use the
prequential AUC 3.

The experiments were performed on a machine equipped with an Intel Core
i7-4700MQ Haswell @ 2.40 GHz processor and 16.00 GB of RAM with installed
NVidia GTX295 GPU. All experiments were conducted in R4 environment, with
the usage of RMOA5 package.

3http://www.cs.put.poznan.pl/dbrzezinski/software.php
4http://www.r-project.org/
5https://github.com/jwijffels/RMOA
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Fig. 1. Prequential AUC for examined classifiers used for mining imbalanced medical
data stream for fetal state monitoring.

Obtained results for the CTU-UHB dataset are given in Figure 1, while
the memory consumption and update times on CPU and GPU are reported
respectively in Tables 1 and 2.

Table 1. Averaged memory consumption [MB] displayed by the examined classifiers.

oELM oELMunder oELMover oELMcost

0.78 0.34 1.42 0.90

Table 2. Comparison of averaged updating times [s.] per chunk displayed by the
examined classifiers computed wit the usage of CPU and GPU.

CPU GPU
oELM oELMunder oELMover oELMcost oELM oELMunder oELMover oELMcost

1.76 3.05 4.18 2.01 0.24 0.65 0.71 0.28
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When analyzing performance of classifiers for online fetal state monitoring
one must take into consideration several criteria in order to gain a broader view
on the problem. When we concentrate only on the classification efficacy ex-
pressed in terms of AUC we can see that standard oELM with ADWIN detector
cannot handle imbalanced and drifting streams properly. Out of three investi-
gated approaches the combination of oELM and oversampling returns superior
classification quality on skewed streams. Undersampling does not deliver as good
results which can be explained by high imbalance ratio in most of the problems.
Here undersampling may remove useful objects that represent current state of
the concept and may point out to the potential drift occurring. Thus it is possible
to discard an useful information which influences the observed classification pro-
cess. Cost-sensitive oELM in most cases achieves AUC performance very similar
to the oversampling model.

However, when we take into account memory consumption and time com-
plexity required to update a model for each chunk our conclusions must change.
Oversampling-based approach is characterized by highest memory and time re-
quirements due to its need to generate, store and process chunks of increased size
(which is especially vivid for cases with high IR). On the other hand undersampling-
based approach is characterized by the lowest requirements due to significant
reduction of the data chunk size being analyzed. Cost-sensitive approach work
on unaltered set of objects, applying only modification to its output. Therefore,
its requirements are identical as in case of standard oELM.

This allows us to conclude that the cost-sensitive oELM is the most suitable
choice for processing drifting and imbalanced medical data streams. It offers
classification accuracy comparable to oversampling solution while maintaining
balanced time and memory requirements.

When comparing processing times we can see that simple delegation of matrix-
based operation to GPU allows us to achieve roughly 10 times computing ac-
celeration regardless of the method used. This proves that using GPU-based
oELMs allow for real-time mining of high-speed data streams.

Combination of oELM improved with ADWIN detector, cost-sensitive output
modification and realized on GPU offers an adaptive, skew-insensitive and rapid
classifier for online fetal state monitoring from imbalanced medical data stream.

5 Conclusions

In this paper an issue of designing an online decision support system for mining
medical data streams was discussed. We concentrated on the problem of moni-
toring fetal state from drifting and skewed stream of instances in real-time. Such
a support tool is of high usefulness to hospital wards, where difficult pregnancies
should be monitored continuously during day and night.

We have used a novel approach for handling imbalanced and drifting data
streams using online Extreme Learning Machines enhanced with drift detector
and data-level or cost-sensitive modifications. We showed that such additions al-
lows oELM to efficiently adapt to non-stationary properties of incoming objects,
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while alleviating the influence of skewed distributions on its performance. Addi-
tionally, an efficient GPU-based implementation was proposed for rapid training
and updating of online classifiers. This allowed for achieving 10 times speed-up
when compared to standard CPU-based implementation. This issue was crucial
in term of mining high-speed data streams.
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Abstract. This work proposes an usage of novel transformation into
feature space that follows a photographic intuition: that we can build
from pairs of features in original space some kind of photographic plate
where the sample data are projected to create a picture of the data
distribution in the feature subspace defined by the feature pair. These
photographic plates may be used as individuals of a classifier ensemble.
The approach allows a natural definition of a confidence weight affecting
each individual classifier out for the construction of a combination rule
used by the ensemble The approach is insensitive to sample size, robust
to dimension increase, and should be able to work well with imbalanced
medical data.

Keywords: machine learning, representation learning, imbalance data,
medical data

1 Introduction

Recently, the representation learning is the fucus of intense research of machine
learning community . The underlying idea is that the key for successful discrim-
ination of difficult datasets is a good feature extraction [1]. A transformation
of the data space into another space where classification is easy. A kind of this
transformation can be performed by an exposer — a data structure, being nei-
ther histogram nor scatter-plot.

Histogram can be defined as a graphical representation of the distribution of
numerical data. It is an estimate of the probability distribution of a continuous
variable (quantitative variable). It was first introduced by Karl Pearson [4].

Construction of a histogram consist of the division1 of the range of values
into a series of intervals, called bins and counting how many elements will fall
in each of them. The bins must be adjacent and usually are equal-sized.

Scatter-plot is a plot used to show distribution of two features for a set of
data, displayed as a cloud of points, representing objects from dataset, each
corresponding with the value of chosen feature determining the position on the
axes [3]. Example scatter plots for iris dataset are presented in Figure 1.

1 Unfortunately not the Joy Division.



Fig. 1. Example scatter plots for iris dataset (1:2, 3:4, 2:3)

2 Exposer Classifier Ensemble

Exposer is drawing from both histogram and scatter plot, according to three
rules:

1. like in histogram the range of values is divided into a series of intervals like
in a scatter plot,

2. the combination of features is analyzed,
3. the rule of bin adjacency is broken here.

Example exposers, generated for the same variables as the illustrated scatter
plots are presented in Figure 2.

Fig. 2. Example exposers plots for iris dataset (1:2, 3:4, 2:3)

The construction of exposer is inspired by the process of plate light exposure
of chemical photography. Hence, its control parameters are plate grain (exposer
counterpart of histograms bin) and a light dispersion factor (called later a radius,
as a relative width of a bin according to a range of values). Instead of exposing
the photographic plate coated with light-sensitive chemicals to the light source,
a numerical representation matrix is exposed to the beams projected from the
data samples. Procedure takes a photography of a pair of features of the data
samples, where intensity of a light in every point is a density aggregation of the
data samples falling in its neighborhood.
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The main difference from classic photography is a redefinition of the concept
of color. For exposers it consists not of classical three rgb spectral channels
[5], but of one dimension per class of the dataset. Hence, the representation
matrix has as many layers as classes. The representation matrix exposure process
sensitizes each layer projecting only objects from the class corresponding to the
layer. There may be assumed, that exposing procedure generates some kind of
multispectral imaging [2] from the data.

Algorithm 1 shows pseudocode of procedure used to create an exposer.

Algorithm 1 Expose algorithm

1: procedure expose(objects,radius,grain,features)
2: for class in classes do
3: objects′ ← objects labeled as class
4: for x← 1 to grain do
5: for y ← 1 to grain do
6: base← (x, y)/grain
7: brightness← 0
8: for object in objects′ do
9: base′ ← object(features)

10: distance←
√∑

(base′ − base)2

11: if distance < radius then
12: brightness← brightness(radius− distance)
13: end if
14: end for
15: E [x, y, class]← brightness
16: end for
17: end for
18: end for
19: end procedure

We have set C, which contains two-element combinations of d features.

C = {γ1, . . . , γ|C|}
γz = [x(u), x(v)], u, v ∈ {1, . . . , d}, u 6= v

|C| =
(
d
2

)

Representation of exposer E is an multispectral image of spatial dimensions
G × G and a spectral dimension M , where G is a grain parameter and M is a
number of classes in dataset.

Exposer E is a multispectral image of spatial dimensions G×G and a spectral
dimension M , where G is a grain parameter and M is a number of classes in
dataset.

E ∈ G×G×M
E = {E1, . . . , EM}
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Every point described by gu and gv gives spectral signature pix.

pix(gu, gv) = [pix1(gu, gv), . . . , pixM (gu, gv)]

Which is a discretization using g quants in every spatial dimension.

pixi(gu, gv) =
n∑

k=1

[
d
(
cent([gu, gv]), xk

)
< r ∧ ik = i

]
·
(
r−d(cent([gu, gv]), xk)

)

Proper color-visualization would be possible only with 3-class problem. To
universalize it, an hsv interpretation was introduced. Figure 3 shows its output.

HSV (pix) =
[
argmax(pix)×360◦

M , max(pix)−min(pix), max(pix)
]

Fig. 3. Exposer

Exposer Classifier Using the exposers as a classification tool is quite easy process.
There is an exposer, exposed on a learning set and a testing sample xk from a
testing set to classify.

xk = {x(1)k , x
(2)
k , . . . , x

(d)
k }, xk ∈ T S

Localization of pixel according to sample.

fin(x) = [gu, gv]

The prediction (Ψ) is the class index with the maximum value from a spectral
signature pix corresponding to the testing sample.

Ψ(xk) = argmax
i∈M

(
pixi

(
fin(xk)

))
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Exposer Classifier Ensemble To create the classification committee, as an en-
semble of exposers, the following procedure is used.

We have ensemble of exposers Π.

Γ ⊂ C, |Γ | = N, N ≤
(
d
k

)

Π = {Ψ (1), . . . , Ψ (N)} (1)

And a weight θi, which is an average saturation for points according to class
for values higher than given threshold.

θi =

∑G
gu=1

∑G
gv=1

[
argmax(pix) = i ∧ pixi > threshold

]
S(pix)

∑G
gu=1

∑G
gv=1

[
argmax(pix) = i

] (2)

Fig. 4. ece classification model diagram.

Classification model The classification model is a three-level construction, pre-
sented in Figure 4, which consists of:

– a set of monochrome layers,
– a member classifier, characterized by a combination of features, denoted by
γi, and a weight θi used to combine its output with the remaining classifiers
into exposer,

– ece ensemble.

3 Experimental evaluation

3.1 Datasets

In medical data sets, data are predominately composed of normal samples with
only a small percentage of abnormal ones, leading to the so-called class imbalance
problems. In class imbalance problems, inputting all the data into the classifier
to build up the learning model will usually lead a learning bias to the majority
class. To deal with this a strategy which over-samples the minority class and
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under-samples the majority one to balance the data sets is often used. Often
there also occurs a problem with missing values.

For experiments, two imbalanced datasets was chosen.

Yeasts3

– 1484 samples
– 2 classes
– 8 features
– imbalanced
– binary

Healthy Sick
0

0.2

0.4

0.6

0.8

Hypertension

– 1424 samples
– 6 classes
– 19 features
– imbalanced
– multilabel
– missing values

A B C D E F
0

0.2

0.4

0.6

3.2 Experimental environment

Experiments was conducted under our original machine learning framework
ksskml2 and its extension ece3, available as a module at pip repository, actu-
ally in version ...

The code of following evaluation is available at public repository 4 and in-
cludes four experiments:

ECE Regular ECE for both Yeast3 and Hypertension.
ECEB Binarized ECE for Hypertension.
ECES Sick-only ECE for Hypertension.
ECE2 Two-staged ECE for Hypertension:

First ECEB for healthy or sick, later ECES to distinguish kind of sickness.

For all experiments 5v2 cross validation was used, and as comparison, they
were conducted also using k-nn algorithm.

3.3 Results

2 https://github.com/w4k2/KSSKML
3 https://github.com/w4k2/ece
4 http://github.com/xehivs/hypertension
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Fig. 5. Yeasts3 results

Yeast3 results As we can see in Figure 3.3 and Table 1, ece algorithm works
better than k-nn. We can observe regression of accuracy, but for imbalanced
medical data, the balanced accuracy is more accurate measure.

Hypertension results As we can see in Figure 3.3 and Table 1, for more
complex – multi-class problem – the classical approach (ece) gives us smaller
increase of classification effectiveness. The best solutions seems to be initial
binarization of problem (eceB) and dealing separately with discrimination on
healthy–sick level and differentiating between classes of illness.

Table 1. Accuracy and balanced accuracy according to experiment

Dataset Algorithm Accuracy bac

Yeasts3 KNN .941 .810
ECE .866 .896

Hypertension KNN .878 .569
ECE .790 .608
ECEB .670 .673
ECES .778 .592
ECE2 .799 .626
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Fig. 6. Hypertension results

4 Conclusions

In this paper, we present how a classifier, formulated as an ensemble of multi-
spectral images generated from paired features of data, deals with imbalance
medical data.

We showed, that this approach leads to create classifier that are competitive
to existing ones and able to outperform them. It could be used for real-life
applications.

For future works we plan to test also an heuristic method of feature combina-
tion limitation, to improve performance of classifier and to adapt the proposed
model to deal with the fast changing streaming data.
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